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Abstract .  Database parallelism offers the potential of efficient query 
execution, but increases the complexity of optimization, as the impact of 
the workload of processors and network on competing and communicat- 
ing processes must be considered. We introduce a query execution model 
that incorporates the effects of the system workload on pipelined query 
execution. Our model is general enough to cover bushy and pipelined 
parallelism for shared-nothing and shared-disk architectures. 

1 I n t r o d u c t i o n  

One of the most difficult issues in database parallelism is the efficient exploitation 
of pipelining, because it "does not easily lend itself to load balancing" [3]. Many 
works on pipelining assume that  there are no startup delays between pipeline 
participants. The effects of latency are simulated and extensively discussed in [6]. 
Pipelines with latency, termed "e-steady pipelines", are modelled in [1], where 
the execution time of a pipeline participant is observed as a function of the 
number of processors assigned to it. However, for large join queries, it is rather 
expected that  multiple processes compete for the same processor. 

Pipelined and bushy parallelism [3] is studied in [1, 4, 2, 6], where the com- 
munication across logical links between interacting processes is also considered. 
However, the network configuration affects the selection of the physical channels 
to connect two communicating processors. A router may even dynamically choose 
different routes between the same processors during query execution. Hence, the 
load of each channel varies over time. 

We propose a model for parallel execution, which alleviates those shortcom- 
ings. First, we consider pipelines with latency. Second, we incorporate processor 
and network load into the cost of bushy schedules. Third, we model the varying 
load on each physical channel during query execution and calculate its impact 
on communication cost. By incorporating more parameters of the optimizer's 
search space into the cost function, the approximation of the actual execution 
time of a schedule becomes more realistic. The parallel architectures we support  
may conform to the shared-nothing and shared-disk paradigms. 
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2 M o d e l l i n g  t h e  Q u e r y  E x e c u t i o n  P r o b l e m  

QEPs and Schedules. A query execution plan (QEP) is a query tree whose nodes 
are operators annotated with execution algorithm and data access information. 
The children of a node x are its "producers"; x is the "consumer". A producer is 
"blocking" if it must complete execution before its consumer starts, or "pipelin- 
ing" if each tuple it outputs is immediately consumed [4]. In a bushy QEP, a 
node may have one pipeline and one blocking producer, e.g. a hash-join, or two 
pipeline producers, e.g. a merge join on two sorted inputs. 

A schedule represents a node-to-processor mapping for the nodes of a QEP. 
We do not consider node parallelism. Hence, a node is assigned to exactly one 
processor and corresponds to a "process" in the schedule. 

Execution Model. Query execution starts by activating the "runnable" processes 
of the schedule; a process is runnable if it has enough input data to operate upon. 
The parent of a blocking process becomes runnable when the child completes. 
The parent of a pipeline process runs in parallel with it, but there is a delay 
between the start time of the process and the start of its parent [6]. This latency 
is caused by local processing delays on the producer, by transmission delays 
across the network and by data buffering, if any. A high latency value may justify 
the replacement of a pipelined edge with a blocking one. Hence, the latency must 
be known to the optimizer to avoid cosnidering unrealistic QEPs. 

Due to blocking and to latency in pipelines, the processes are not active 
throughout the query execution. Thus, the system workload varies, as processor 
resources and channel bandwidth are dynamically redistributed. 

A pipeline executes at the pace of its slowest process. Due to latency, a process 
affects the execution pace of the pipeline only when it becomes runnable. There- 
fore, the execution rates of pipelined processes must be synchronized on the fly. 
We present such a dynamic synchronization mechanism in [5]: We compute the 
relative execution rates of all producers of a node x, and identify the slowest pro- 
ducer Yl. We specify two adjustment functions taking values in the (0, 1] range: 
adjustConsumer(x,yx) slows down the consumer, while adjustProducer(x, yi) 
reduces the execution speed of producer Yi. 

The Cost Computation Problem: given a schedule S and a system configura- 
tion, compute Cost(S) as the total elapsed time from the beginning of the first 
runnable process to the completion of all processes. 

Cost(S) is the sum of the execution time of the root process and the elapsed 
time until the root starts, The latter is computed recursively as the elapsed time 
until a process starts and its execution time until it has produced enough output 
for its own consumer to start. A consumer starts when its slowest producer has 
output enough data. This definition covers blocking and pipelining producers. 

Our cost model simulates the execution of the schedule monitoring the evo- 
lution of system load. We first consider the impact of latency and multitasking 
on the cost of a process in a pipeline. In section 4, we study their effects on the 
whole schedule. The impact of network load is discussed in section 5. 
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3 P r o c e s s  C o s t  i n  a P i p e l i n e  

3.1 Cos t  o f  a n  I n d i v i d u a l  P r o c e s s  

Let C(.) be the cost of a process executed by a specific algorithm. It includes 
CPU time and local I /O,  but  neither remote I /O nor network transfers, which 
are computed by our model. Cost functions for C(.) are presented in [3]. 

Let x be a process and S~ the set of all processes running simultaneously 
on that  processor�9 The processor distributes its resources among n = card(S) 
processes, where card(�9 denotes cardinality. So, the cost of x is C(x, S,) .  When 
the content of S= changes to S~, it holds that:  

C(x, S~) = C(x, S=). f(S=, S'~) where ] (S , ,  St=) = E y e s ,  C(y, S~) c(y,s,) (1) 

As shown in the next section, recalculation occurs as soon as one process is added 
or removed from the processor's load, i.e. card(S'x) = card(S,) fl: 1. Further, 
the classic relational operators have similar (low) CPU demand and high I /O  
demand per time unit. Hence, we can assume that  their cost increases linearly 
with the number of processes sharing the processor, so that:  

card(S~) 
f(S=,S~) ..~ card(S,) 

This assumption does not hold for the allocation of memory resources, a problem 
we intend to address. It  will cause the replacement of the above formula by a 
more complex function. Our results are not affected otherwise. 

3.2  C o s t  o f  a P r o c e s s  in a P i p e  

Let x be a process in the schedule, and let C ~ni~ (x, Sx) be its "initialization time", 
i.e. the time it needs to produce the data  needed by its consumer to start. If 
x is blocking, cini t (x ,  Sx) -~ C(x,  Sx). For pipeline processes, C init reflects the 
impact of latency. For the root, which has no consumer, C inu is equal to zero. 

Let Tinit(x, S=) be the elapsed time from query start  to the end of the time 
span C init (x, S=). Let y be its slowest producer of x. Then: 

Tinit(x S ~ t Cinit(x'Sx) , x is a leaf 
' ~J = ~ T init (y, Su) + adjustConsumer(x,  y) �9 C init (x, Sx) , otherwise 

(2) 
If x is too fast for its producers, it is slowed down by the adjustment function 
adjustConsumer(.  ) [5]�9 

Let cend(x, Sz) be the "completion time" of x, i.e. its remaining execution 
time after Cinit(x,S~). If the consumer of x runs on the same processor as x, 
then the contents of S,  change into S'x and the processor's resources must be 
redistributed. According to Eq.l :  

co.d(x ,S  ,) = [ c ( = ,  s . )  - ci""(=,s,) s" =. s ,  
[ c(z,s=) ctS Ci"it x S=) G �9 d~.  , ,  ~ 1  - -  \ , I S ,  
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Let Tend(x, S~) be the elapsed time from the beginning of query execution 
to the completion of x: 

Tend(x, S~) = adjustProducer(z, x) . cend(x, S~) + Tini~(x, Sx) (3) 

where the adjustment function adjustProducer(.) slows down x if it is faster 
than its consumer z; otherwise it is equal to 1 [5]. 

In Fig. 1, we show a QEP scheduled on one processor. Its cost is the execution 
time of x and the elapsed time until it starts execution. This elapsed time is equal 
to the initialization time of Yl, assuming that  Yl is slower than Y2. 
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Fig. 1. Execution of a pipeline with two pipelining producers 

In order to keep the example simple, we have assumed that  the three processes 
finish together. However, there will usually be a delay between the completion 
of Yl and Y2 and that  of x, implying a further redistribution of resources, as 
modelled in the next section. 

4 A M e c h a n i s m  f o r  E v e n t  C a p t u r i n g  

We define as "interesting event" or simply "event" a change on resource uti- 
lization, occuring at some point on the processor's time axis. Resource utiliza- 
tion changes when a process starts execution ("Star t  Event" SE), when it has 
produced enough data  for its consumer to start  and must transmit them to it 
("initialization Event" IE) and when it terminates ("termination event" TE) .  
The SE for a process coincides with the IE of its slowest producer. 

The  functions T init (.) and Tend(') defined in Eq.2 and Eq.3 of subsection3.2 
mark the occurence of the IE and the T E  respectively. We use hereafter the 
terms "event" and "time point at which the event occurs" interchangeably. 

The load on a processor depends on the processes running on it. The load 
on a network channel depends on the processes using it for data  transfer. By 
the above definition, utilization of these resources is constant between any two 
adjacent events. Thus, we measure the cost of a schedule by detecting the three 
aforementioned types of events and placing them on the time axis. This gives us 
a precise estimation of the execution time on each processor. 
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4.1  E v e n t s  o n  O n e  P r o c e s s o r  

Let S i denote the set of processes assigned to processor i. The processor is active 
until all these processes have finished execution, i.e. for the time span [0, tinct], 
where t~n d = maxzes,(Tena(x, Si)). This time span is divided into intervals by 
a series of points O, til, ti2, . . .  , tend , i  each one corresponding to some event. 

Let A i be the set of processes, for which the IE has not occured yet, and let 
B i be the set of processes running to completion after their IEs. When the IEs 
of all producers of a process have occured, the process becomes runnable and 
is added to set A i. When its IE occurs, the process migrates to set B i. When 
its TE occurs, it is eliminated. Processor i completes execution when A i and B i 
become empty. We denote the instance of A i (B i) at t~ as A~ (Bj). 

i at which the jth event occurs. The j t h  event.  We want to estimate the time tj 
t~. corresponds to the earliest among the IEs of the processes in A~. and the TEs 
of the processes in Bj: 

t~. = min (min(Tini t (x ,  Aj U Bj)), min(Tend(x, i U B j ) ) )  
k z e A j  zeB} Aj (4) 

Let xj be the process corresponding to this minimum. Then: 

1. If xj belonged to Aj, the event indicates that  xj has completed its initial- 
ization phase and must migrate from A i to Bi: A~+ 1 = A~ - {xj} and 

Bj+, = Bj U{xj}. 
If the consumer of xj,  say w, is now runnable, i.e. if the IEs of the siblings 
of xj have already occurred, then w is added to Aj+ 1 . 

2. If xj belonged to Bj, the event indicates that  its execution is now completed. 
Then, it must be removed from Bi: Bj+ 1 = Bj - {xj}.  

Impact of multitasking. Let x be a process running after the event t~.. Then: 

1. If t~. is the SE of x, the initialization time of x is C init (x, A~.+I U Bj+I). 
2. If the IE of x has not occured before tj ,  then its remaining initialization time 

is Tinit (x, A jUB~) - t j . i  i i This time must be adjusted according to Eq.1, into: 

Tinit( ai  i i (Tinit i i i i i AjUB~) - �9 = - t j ) ' f ( A ~ +  1UBJ+I ,  i i ~. , x , . . j+ l  U S~+l) t~ (x,A~UBj) 

remaining initialization time 
(5) 

For the computation of tj+l, we compute the time point of the IE of x for 
the new resource allocation: 

rinit(~g,A~+l USa+l)= (Tinit($,A~uBj)-t~).f(A~+l UBj+I,A~ UB~)-I'-t ~ 

3. If t~ is the IE of x, the completion time of x is cend(x,A~+l U Bj+,). 
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4. If the IE of x has occured before t~., the remaining completion time of x is 
Tend(- Ai i This time must be adjusted into: ,x,,~j U Bj)  - tj .  

end  i i _ ( T e n d ( x ,  i i i i i i - A ; t g B ~ ) - t j ) . f ( A ; +  1 i �9 - U B i + z ,  A}  U B~) Bj+I) tr T, ( x ,A ;+ l ?  i 

r e m a i n i n g  c o m p l e t i o n  t i m e  

(6) 
Similarly to the second case above, the TE  for x under the new resource 
allocation will occur at: 

 end,--i i i A uBj)+g. 1 (X, ,a j+IUB~+I)=(Tend(x ,A}UBj)  t~)" i 
- y(Aj+  u 

4.2 In ter l eav ing  E v e n t s  o n  Di f ferent  P r o c e s s o r s  

If a process is assigned to another processor than its consumer, then the pro- 
ducer's IE must be "projected" onto the time axis of the other processor, because 
data  must be transferred from the producer to the consumer. This data  transfer 
affects the network load. We initially describe this projection mechanism without 
considering the delay caused by data  transfer. In the next section, we generalize 
our formulae to incorporate this delay. 

Each processor has its individual clock. The interference of process execution, 
though, forces us to place the events occuring on different processors in total or- 
der on a common time axis. Therefore, we introduce therefore a virtual "reference 
time axis" on which we place the events of all p processors. The execution time 
span for the query on the reference axis is [0, tend], where tend = maxi=z...p (t~nd). 
At point 0 (beginning of time axis), we assume without loss of generality, tha t  
all processors start  processing the query. 

We compute the time tj of the jth event on the reference time axis, by 
identifying the earliest event that  is not already placed on this axis. 

tj = m:np( t ; , )  (7) 

where we denote as t~.~ the time of the earliest event on processor i, which is not 
already placed on the reference time axis. We use the double index ji, because 
the event counters on the different processors are not advanced at the same pace. 

Let t k. be the event corresponding to tj. If t k. is the IE of a process whose 
3t, 3t, 

consumer is located on a different processor l, then t I. becomes the time of this 
31 

IE, i.e. it becomes equal to t j ,  and the counter jl is advanced. If this IE caused 
a process to start, the time point of the next  event on I must be recomputed 
according to Eq.5 and Eq.6 replacing the local t ime point t~ by tj .  Otherwise, 
the IE only needs to be renumbered, as the event counter has been advanced. 

Example. In Fig. 2, we show a QEP and schedule on two processors P1  and 
P2.  Each processor has its own time axis, and the events on it are projected on 
the reference axis. We denote by xl_init  the event occuring at Tinit(xl,  .) and 

i similarly for the other events, t { i } j  stands for tj. 
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Fig. 2. Execution of a bushy QEP on two processors 

Initially, processes xl,x2,x3 run on P1  and Yl runs on P2. The first event 
occurs at t{1}l ,  so tha t  t l  is set equal to t{1}l.  The second event occurs at 
t{ 1)2. I t  is projected on the time axis of P2, as [t{2} 1], where the square brackets 
denote the projection operation. This event is also the SE of y2. The original 
event that  occured at t{2}l  is placed in a circle, because it was computed without 
considering Y2: it is renumbered into t(2}2 and its value is recomputed. 

Event t3 corresponds to t{2}2. Since Yl is one of the producers of x4, t3 is 
projected on the t ime axis of processor P1.  This event causes the renumbering 
of subsequent events on P1 but  no recomputat ion because x4 cannot s tar t  yet. 
Subsequent events are computed similarly. TEs are never projected, because they 
only affect the resource usage of the processor on which they occur. 

5 D a t a  T r a n s f e r  C o s t  

We model the network delay between the time an IE occurs and the t ime it is 
perceived by the processor of the consumer. 

5.1 C h a n n e l  L o a d  d u e  to  D a t a f l o w  

We represent the network configuration as a graph G(V, E),  where V is the set 
of processors and E the set of channels connecting them. A schedule assumes a 
"conceptual" topology of links among the processors tha t  must interact. These 
links are materialized on the network's channels by a router. We assume that:  
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- The router may change the mapping of links dynamically during execution. 
- The  routing criterion is known to the optimizer. 
- The path of channels materializing a link does not change between two con- 

secutive events on the reference time axis. 

Let Pathj (i, k) be the set of channels selected by the router to materialize 
the link between processors i , k  at  tj;  this path will not change prior to t j+ l .  
Further,  let L e be the set of processes communicating across channel e E E with 
their consumers; L~ is its instance at tj .  The sets L e (e C E) reflect the network 
load, similarly to the sets A i and B i (i E V) reflecting processor load. 

We denote by tcornm(e) the "ideal transfer time" on a channel e, defined as 
the time required to transfer a data  unit across e, when e has no other da ta  to 
transfer. The "actual transfer time" across e at tj is card(L~) �9 tcomr,(e). 

Let block(x i, x k) be the amount  of data  units sent at each transmission from 
x i to its consumer x k. We assume that  those data  are accumulated on processor 
k, so that  processor i does not fill its local storage with foreign data. If tj  is the 
IE of x i, then an initial transfer of block(xi,x k) data  units must be performed 
from processor i to k. Its cost is: 

t rans ferCos t (x  i, x k, tj) = block(x i, xk) �9 ~ card(L~), tcomm(e) (8) 
eEPathj (i,k) 

In order to project the IE of x i onto the time axis of k, this transfer delay 
must be taken into account: 

k tj~ = tj + t rans ferCos t (x  i, x k, tj) (9) 

5 .2  R e m o t e  I / O  C o s t  

The network load is further affected by remote I /O.  If each processor has its own 
local storage, as in the shared-nothing architecture, then intermediate results are 
stored locally and remote I /O  may only occur at leaf nodes. We model this case 
by introducing " I /O processes", dedicated to retrieve data  from local discs and 
to transmit  them to the network. As this transmission can take place in pipeline 
mode, remote I /O  cost is a special case of dataflow cost. 

If some processors have no access to local storage, as in the shared-disk 
architecture, all their I /O is remote. Remote I /O  for data  transmission can be 
modelled by the I /O  processes described above. Remote I /O  on the temporary  
data  of joins must be modelled differently, because it can occur at any time, even 
between adjacent events. An initial solution to this problem is described in [5]. 

6 C o n c l u s i o n s  

We have presented a model incorporating resource utilization in parallel query 
execution. Our model covers the exploitation of bushy parallelism and pipelining 
in shared-nothing and shared-disk architectures. We consider a complex pipeline 
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scheme, in which we integrate the impact of latency in pipe execution and sup- 
port the dynamic synchronization of processes in a pipe. 

In order to provide the optimizer with a realistic estimate of schedule cost, 
we compute the system load by simulating schedule execution on each processor 
involved. This simulation mechanism is based on the detection of interesting 
events, namely events that signal a change in the system load, and on their 
placement on a time axis. The time span covered by those events is the total 
duration of schedule execution. 

Our model is more general than typical scheduling models, but also more 
vulnerable to wrong estimations concerning system load, especially for mixed 
loads. Schedule cost computation increases quadratically to the query size, mak- 
ing our model too expensive for exhaustive optimizers. However, our envisaged 
application area is that of parallel querying for decision support: The query sizes 
make the usage of non-exhaustive strategies imperative. Query processing cost is 
higher than optimization cost by orders of magnitude. The system load implied 
by one query makes the launching of multiple simultaneous queries prohibitive. 

The second application area of our model is the analysis of the solution spaces 
for parallel schedules. Its generality makes it suitable as a reference model to 
study the behaviour of simpler and faster models. In particular, it is appropriate 
for a detailed analysis of the shape of the search space of parallel schedules, so 
that the proximity of the search spaces of other cost models can be qualitatively 
evaluated. Our immediate plans include such a detailed analysis for bushy trees 
of large join queries and a comparative study of simpler cost models. 
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