
Modelling Resource Utilization in Pipelined
Query Execution

Myra Spiliopoulou 1 and Johann Christoph Freytag ~

1 Institut ffir Wirtschaftsinformatik
Humboldt-Universit~t zu Berlin
Email: myra~wiwi.hu-berlin.de

2 Institut ffir Informatik
Humboldt-Universit~t zu Berlin

Email: freytag~dbis.inform atik.hu-berlin.de

Abstract . Database parallelism offers the potential of efficient query
execution, but increases the complexity of optimization, as the impact of
the workload of processors and network on competing and communicat-
ing processes must be considered. We introduce a query execution model
that incorporates the effects of the system workload on pipelined query
execution. Our model is general enough to cover bushy and pipelined
parallelism for shared-nothing and shared-disk architectures.

1 I n t r o d u c t i o n

One of the most difficult issues in database parallelism is the efficient exploitation
of pipelining, because it "does not easily lend itself to load balancing" [3]. Many
works on pipelining assume that there are no startup delays between pipeline
participants. The effects of latency are simulated and extensively discussed in [6].
Pipelines with latency, termed "e-steady pipelines", are modelled in [1], where
the execution time of a pipeline participant is observed as a function of the
number of processors assigned to it. However, for large join queries, it is rather
expected that multiple processes compete for the same processor.

Pipelined and bushy parallelism [3] is studied in [1, 4, 2, 6], where the com-
munication across logical links between interacting processes is also considered.
However, the network configuration affects the selection of the physical channels
to connect two communicating processors. A router may even dynamically choose
different routes between the same processors during query execution. Hence, the
load of each channel varies over time.

We propose a model for parallel execution, which alleviates those shortcom-
ings. First, we consider pipelines with latency. Second, we incorporate processor
and network load into the cost of bushy schedules. Third, we model the varying
load on each physical channel during query execution and calculate its impact
on communication cost. By incorporating more parameters of the optimizer's
search space into the cost function, the approximation of the actual execution
time of a schedule becomes more realistic. The parallel architectures we support
may conform to the shared-nothing and shared-disk paradigms.

873

2 M o d e l l i n g t h e Q u e r y E x e c u t i o n P r o b l e m

QEPs and Schedules. A query execution plan (QEP) is a query tree whose nodes
are operators annotated with execution algorithm and data access information.
The children of a node x are its "producers"; x is the "consumer". A producer is
"blocking" if it must complete execution before its consumer starts, or "pipelin-
ing" if each tuple it outputs is immediately consumed [4]. In a bushy QEP, a
node may have one pipeline and one blocking producer, e.g. a hash-join, or two
pipeline producers, e.g. a merge join on two sorted inputs.

A schedule represents a node-to-processor mapping for the nodes of a QEP.
We do not consider node parallelism. Hence, a node is assigned to exactly one
processor and corresponds to a "process" in the schedule.

Execution Model. Query execution starts by activating the "runnable" processes
of the schedule; a process is runnable if it has enough input data to operate upon.
The parent of a blocking process becomes runnable when the child completes.
The parent of a pipeline process runs in parallel with it, but there is a delay
between the start time of the process and the start of its parent [6]. This latency
is caused by local processing delays on the producer, by transmission delays
across the network and by data buffering, if any. A high latency value may justify
the replacement of a pipelined edge with a blocking one. Hence, the latency must
be known to the optimizer to avoid cosnidering unrealistic QEPs.

Due to blocking and to latency in pipelines, the processes are not active
throughout the query execution. Thus, the system workload varies, as processor
resources and channel bandwidth are dynamically redistributed.

A pipeline executes at the pace of its slowest process. Due to latency, a process
affects the execution pace of the pipeline only when it becomes runnable. There-
fore, the execution rates of pipelined processes must be synchronized on the fly.
We present such a dynamic synchronization mechanism in [5]: We compute the
relative execution rates of all producers of a node x, and identify the slowest pro-
ducer Yl. We specify two adjustment functions taking values in the (0, 1] range:
adjustConsumer(x,yx) slows down the consumer, while adjustProducer(x, yi)
reduces the execution speed of producer Yi.

The Cost Computation Problem: given a schedule S and a system configura-
tion, compute Cost(S) as the total elapsed time from the beginning of the first
runnable process to the completion of all processes.

Cost(S) is the sum of the execution time of the root process and the elapsed
time until the root starts, The latter is computed recursively as the elapsed time
until a process starts and its execution time until it has produced enough output
for its own consumer to start. A consumer starts when its slowest producer has
output enough data. This definition covers blocking and pipelining producers.

Our cost model simulates the execution of the schedule monitoring the evo-
lution of system load. We first consider the impact of latency and multitasking
on the cost of a process in a pipeline. In section 4, we study their effects on the
whole schedule. The impact of network load is discussed in section 5.

874

3 P r o c e s s C o s t i n a P i p e l i n e

3.1 Cos t o f a n I n d i v i d u a l P r o c e s s

Let C(.) be the cost of a process executed by a specific algorithm. It includes
CPU time and local I /O, but neither remote I /O nor network transfers, which
are computed by our model. Cost functions for C(.) are presented in [3].

Let x be a process and S~ the set of all processes running simultaneously
on that processor�9 The processor distributes its resources among n = card(S)
processes, where card(�9 denotes cardinality. So, the cost of x is C(x, S,) . When
the content of S= changes to S~, it holds that:

C(x, S~) = C(x, S=). f(S=, S'~) where] (S , , St=) = E y e s , C(y, S~) c(y,s,) (1)

As shown in the next section, recalculation occurs as soon as one process is added
or removed from the processor's load, i.e. card(S'x) = card(S,) fl: 1. Further,
the classic relational operators have similar (low) CPU demand and high I /O
demand per time unit. Hence, we can assume that their cost increases linearly
with the number of processes sharing the processor, so that:

card(S~)
f(S=,S~) ..~ card(S,)

This assumption does not hold for the allocation of memory resources, a problem
we intend to address. It will cause the replacement of the above formula by a
more complex function. Our results are not affected otherwise.

3.2 C o s t o f a P r o c e s s in a P i p e

Let x be a process in the schedule, and let C ~ni~ (x, Sx) be its "initialization time",
i.e. the time it needs to produce the data needed by its consumer to start. If
x is blocking, cini t (x , Sx) -~ C(x, Sx). For pipeline processes, C init reflects the
impact of latency. For the root, which has no consumer, C inu is equal to zero.

Let Tinit(x, S=) be the elapsed time from query start to the end of the time
span C init (x, S=). Let y be its slowest producer of x. Then:

Tinit(x S ~ t Cinit(x'Sx) , x is a leaf
' ~J = ~ T init (y, Su) + adjustConsumer(x, y) �9 C init (x, Sx) , otherwise

(2)
If x is too fast for its producers, it is slowed down by the adjustment function
adjustConsumer(.) [5]�9

Let cend(x, Sz) be the "completion time" of x, i.e. its remaining execution
time after Cinit(x,S~). If the consumer of x runs on the same processor as x,
then the contents of S, change into S'x and the processor's resources must be
redistributed. According to Eq.l :

co.d(x ,S ,) = [c (= , s .) - ci""(=,s,) s" =. s ,
[c(z,s=) ctS Ci"it x S=) G �9 d~. , , ~ 1 - - \ , I S ,

875

Let Tend(x, S~) be the elapsed time from the beginning of query execution
to the completion of x:

Tend(x, S~) = adjustProducer(z, x) . cend(x, S~) + Tini~(x, Sx) (3)

where the adjustment function adjustProducer(.) slows down x if it is faster
than its consumer z; otherwise it is equal to 1 [5].

In Fig. 1, we show a QEP scheduled on one processor. Its cost is the execution
time of x and the elapsed time until it starts execution. This elapsed time is equal
to the initialization time of Yl, assuming that Yl is slower than Y2.

X
/
i clinit}(y1,{yl,9}) :

A ,/
/

C t ~ y l , y 2 })
!

I '
|

o W{initl(y2,{9,y2}) WlinitJ(y1,1yl,y2})

C{end},!~y2,x})
Clend}(y~j.~,y2,x}) !

" ~

Clen~,lyl,y2,xl) ,'1
|
|
*

T{e~d}(x,{yl, y2,x})
Tt~d}(yl, tyl,y2,x}}
TIend}(y2,{yl,y2,x})

Fig. 1. Execution of a pipeline with two pipelining producers

In order to keep the example simple, we have assumed that the three processes
finish together. However, there will usually be a delay between the completion
of Yl and Y2 and that of x, implying a further redistribution of resources, as
modelled in the next section.

4 A M e c h a n i s m f o r E v e n t C a p t u r i n g

We define as "interesting event" or simply "event" a change on resource uti-
lization, occuring at some point on the processor's time axis. Resource utiliza-
tion changes when a process starts execution ("Star t Event" SE), when it has
produced enough data for its consumer to start and must transmit them to it
("initialization Event" IE) and when it terminates ("termination event" TE) .
The SE for a process coincides with the IE of its slowest producer.

The functions T init (.) and Tend(') defined in Eq.2 and Eq.3 of subsection3.2
mark the occurence of the IE and the T E respectively. We use hereafter the
terms "event" and "time point at which the event occurs" interchangeably.

The load on a processor depends on the processes running on it. The load
on a network channel depends on the processes using it for data transfer. By
the above definition, utilization of these resources is constant between any two
adjacent events. Thus, we measure the cost of a schedule by detecting the three
aforementioned types of events and placing them on the time axis. This gives us
a precise estimation of the execution time on each processor.

876

4.1 E v e n t s o n O n e P r o c e s s o r

Let S i denote the set of processes assigned to processor i. The processor is active
until all these processes have finished execution, i.e. for the time span [0, tinct],
where t~n d = maxzes,(Tena(x, Si)). This time span is divided into intervals by
a series of points O, til, ti2, . . . , tend , i each one corresponding to some event.

Let A i be the set of processes, for which the IE has not occured yet, and let
B i be the set of processes running to completion after their IEs. When the IEs
of all producers of a process have occured, the process becomes runnable and
is added to set A i. When its IE occurs, the process migrates to set B i. When
its TE occurs, it is eliminated. Processor i completes execution when A i and B i
become empty. We denote the instance of A i (B i) at t~ as A~ (Bj).

i at which the jth event occurs. The j t h event. We want to estimate the time tj
t~. corresponds to the earliest among the IEs of the processes in A~. and the TEs
of the processes in Bj:

t~. = min (min(Tini t (x , Aj U Bj)), min(Tend(x, i U B j)))
k z e A j zeB} Aj (4)

Let xj be the process corresponding to this minimum. Then:

1. If xj belonged to Aj, the event indicates that xj has completed its initial-
ization phase and must migrate from A i to Bi: A~+ 1 = A~ - {xj} and

Bj+, = Bj U{xj}.
If the consumer of xj, say w, is now runnable, i.e. if the IEs of the siblings
of xj have already occurred, then w is added to Aj+ 1 .

2. If xj belonged to Bj, the event indicates that its execution is now completed.
Then, it must be removed from Bi: Bj+ 1 = Bj - {xj}.

Impact of multitasking. Let x be a process running after the event t~.. Then:

1. If t~. is the SE of x, the initialization time of x is C init (x, A~.+I U Bj+I).
2. If the IE of x has not occured before tj , then its remaining initialization time

is Tinit (x, A jUB~) - t j . i i i This time must be adjusted according to Eq.1, into:

Tinit(ai i i (Tinit i i i i i AjUB~) - �9 = - t j) ' f (A ~ + 1UBJ+I , i i ~. , x , . . j+ l U S~+l) t~ (x,A~UBj)

remaining initialization time
(5)

For the computation of tj+l, we compute the time point of the IE of x for
the new resource allocation:

rinit(~g,A~+l USa+l)= (Tinit($,A~uBj)-t~).f(A~+l UBj+I,A~ UB~)-I'-t ~

3. If t~ is the IE of x, the completion time of x is cend(x,A~+l U Bj+,).

877

4. If the IE of x has occured before t~., the remaining completion time of x is
Tend(- Ai i This time must be adjusted into: ,x,,~j U Bj) - tj .

end i i _ (T e n d (x , i i i i i i - A ; t g B ~) - t j) . f (A ; + 1 i �9 - U B i + z , A} U B~) Bj+I) tr T, (x ,A ;+ l ? i

r e m a i n i n g c o m p l e t i o n t i m e

(6)
Similarly to the second case above, the TE for x under the new resource
allocation will occur at:

 end,--i i i A uBj)+g. 1 (X, ,a j+IUB~+I)=(Tend(x ,A}UBj) t~)" i
- y(Aj+ u

4.2 In ter l eav ing E v e n t s o n Di f ferent P r o c e s s o r s

If a process is assigned to another processor than its consumer, then the pro-
ducer's IE must be "projected" onto the time axis of the other processor, because
data must be transferred from the producer to the consumer. This data transfer
affects the network load. We initially describe this projection mechanism without
considering the delay caused by data transfer. In the next section, we generalize
our formulae to incorporate this delay.

Each processor has its individual clock. The interference of process execution,
though, forces us to place the events occuring on different processors in total or-
der on a common time axis. Therefore, we introduce therefore a virtual "reference
time axis" on which we place the events of all p processors. The execution time
span for the query on the reference axis is [0, tend], where tend = maxi=z...p (t~nd).
At point 0 (beginning of time axis), we assume without loss of generality, tha t
all processors start processing the query.

We compute the time tj of the jth event on the reference time axis, by
identifying the earliest event that is not already placed on this axis.

tj = m:np(t ; ,) (7)

where we denote as t~.~ the time of the earliest event on processor i, which is not
already placed on the reference time axis. We use the double index ji, because
the event counters on the different processors are not advanced at the same pace.

Let t k. be the event corresponding to tj. If t k. is the IE of a process whose
3t, 3t,

consumer is located on a different processor l, then t I. becomes the time of this
31

IE, i.e. it becomes equal to t j , and the counter jl is advanced. If this IE caused
a process to start, the time point of the next event on I must be recomputed
according to Eq.5 and Eq.6 replacing the local t ime point t~ by tj . Otherwise,
the IE only needs to be renumbered, as the event counter has been advanced.

Example. In Fig. 2, we show a QEP and schedule on two processors P1 and
P2. Each processor has its own time axis, and the events on it are projected on
the reference axis. We denote by xl_init the event occuring at Tinit(xl, .) and

i similarly for the other events, t { i } j stands for tj.

878

P1

I

P2 10 i

i
!
i

Reference i
Axis o

xl_init

0 t | t) 1

x2 hit x3_iui x4 ht
y2:start x4_slmt y3~r t

t{1}2 [t[1}3] t{l |4

1
I
I ; I . .

i
t l t 2 t 3 t 4

t { 1 } 5

i
1

y2_iul 1
t (2) ~ [J{2111

t5 t6

xl_md x2end

ttx~6 tll)7

I y l _ e u d

i i

i i
t 7 t;8 t 9

x3_eud x4_eud

t!z)s t~x~9

y2eud y3_eud
t(2}6 t~{2)7

i

f
"2

tlO i l l t12 tlS

Fig. 2. Execution of a bushy QEP on two processors

Initially, processes xl,x2,x3 run on P1 and Yl runs on P2. The first event
occurs at t{1}l , so tha t t l is set equal to t{1}l. The second event occurs at
t{ 1)2. I t is projected on the time axis of P2, as [t{2} 1], where the square brackets
denote the projection operation. This event is also the SE of y2. The original
event that occured at t{2}l is placed in a circle, because it was computed without
considering Y2: it is renumbered into t(2}2 and its value is recomputed.

Event t3 corresponds to t{2}2. Since Yl is one of the producers of x4, t3 is
projected on the t ime axis of processor P1. This event causes the renumbering
of subsequent events on P1 but no recomputat ion because x4 cannot s tar t yet.
Subsequent events are computed similarly. TEs are never projected, because they
only affect the resource usage of the processor on which they occur.

5 D a t a T r a n s f e r C o s t

We model the network delay between the time an IE occurs and the t ime it is
perceived by the processor of the consumer.

5.1 C h a n n e l L o a d d u e to D a t a f l o w

We represent the network configuration as a graph G(V, E), where V is the set
of processors and E the set of channels connecting them. A schedule assumes a
"conceptual" topology of links among the processors tha t must interact. These
links are materialized on the network's channels by a router. We assume that:

879

- The router may change the mapping of links dynamically during execution.
- The routing criterion is known to the optimizer.
- The path of channels materializing a link does not change between two con-

secutive events on the reference time axis.

Let Pathj (i, k) be the set of channels selected by the router to materialize
the link between processors i , k at tj; this path will not change prior to t j+ l .
Further, let L e be the set of processes communicating across channel e E E with
their consumers; L~ is its instance at tj . The sets L e (e C E) reflect the network
load, similarly to the sets A i and B i (i E V) reflecting processor load.

We denote by tcornm(e) the "ideal transfer time" on a channel e, defined as
the time required to transfer a data unit across e, when e has no other da ta to
transfer. The "actual transfer time" across e at tj is card(L~) �9 tcomr,(e).

Let block(x i, x k) be the amount of data units sent at each transmission from
x i to its consumer x k. We assume that those data are accumulated on processor
k, so that processor i does not fill its local storage with foreign data. If tj is the
IE of x i, then an initial transfer of block(xi,x k) data units must be performed
from processor i to k. Its cost is:

t rans ferCos t (x i, x k, tj) = block(x i, xk) �9 ~ card(L~), tcomm(e) (8)
eEPathj (i,k)

In order to project the IE of x i onto the time axis of k, this transfer delay
must be taken into account:

k tj~ = tj + t rans ferCos t (x i, x k, tj) (9)

5 .2 R e m o t e I / O C o s t

The network load is further affected by remote I /O. If each processor has its own
local storage, as in the shared-nothing architecture, then intermediate results are
stored locally and remote I /O may only occur at leaf nodes. We model this case
by introducing " I /O processes", dedicated to retrieve data from local discs and
to transmit them to the network. As this transmission can take place in pipeline
mode, remote I /O cost is a special case of dataflow cost.

If some processors have no access to local storage, as in the shared-disk
architecture, all their I /O is remote. Remote I /O for data transmission can be
modelled by the I /O processes described above. Remote I /O on the temporary
data of joins must be modelled differently, because it can occur at any time, even
between adjacent events. An initial solution to this problem is described in [5].

6 C o n c l u s i o n s

We have presented a model incorporating resource utilization in parallel query
execution. Our model covers the exploitation of bushy parallelism and pipelining
in shared-nothing and shared-disk architectures. We consider a complex pipeline

880

scheme, in which we integrate the impact of latency in pipe execution and sup-
port the dynamic synchronization of processes in a pipe.

In order to provide the optimizer with a realistic estimate of schedule cost,
we compute the system load by simulating schedule execution on each processor
involved. This simulation mechanism is based on the detection of interesting
events, namely events that signal a change in the system load, and on their
placement on a time axis. The time span covered by those events is the total
duration of schedule execution.

Our model is more general than typical scheduling models, but also more
vulnerable to wrong estimations concerning system load, especially for mixed
loads. Schedule cost computation increases quadratically to the query size, mak-
ing our model too expensive for exhaustive optimizers. However, our envisaged
application area is that of parallel querying for decision support: The query sizes
make the usage of non-exhaustive strategies imperative. Query processing cost is
higher than optimization cost by orders of magnitude. The system load implied
by one query makes the launching of multiple simultaneous queries prohibitive.

The second application area of our model is the analysis of the solution spaces
for parallel schedules. Its generality makes it suitable as a reference model to
study the behaviour of simpler and faster models. In particular, it is appropriate
for a detailed analysis of the shape of the search space of parallel schedules, so
that the proximity of the search spaces of other cost models can be qualitatively
evaluated. Our immediate plans include such a detailed analysis for bushy trees
of large join queries and a comparative study of simpler cost models.

References

1. Sumit Ganguly, Apostolos Gerasoulis, and Weining Wang. Partitioning pipelines
with communication costs. In Int. Conf. on In]ormation Systems and Management
of Data, pages 302-320, Bombay, India, 1995.

2. Minos Garofalalds and Yannis Ioannidis. Multi-dimensional resource scheduling for
parallel queries. In SIGMOD Int. Conf. on Management of Data. ACM, 1996.

3. Goetz Graefe. Query evaluation techniques for large databases. ACM Computing
Surveys, 25(2):73-170, 1993.

4. Waqar Hasan and Rajeev Motwani. Optimization algorithms for exploiting the
parallelism-communication tradeoff in pipelined parallelism. In Int. Conf. on Very
Large Databases, pages 36-47, Santiago, Chile, 1994.

5. Myra Spiliopoulou and Johann Christoph Freytag. Modelling the dynamic evolution
of system workload during pipelined query execution. Technical Report ISS-20,
Institut f/Jr Wirtschaftsinformatik, Humboldt-Universit~t zu Berlin, Germany, 1995.
http:/ /www.wiwi.hu-berlin.de/institute/iwi/info/reseaxch/iss/ /papers/ISS20.ps.

6. Anita N. Wilschut and Peter M.G. Apers. Dataflow query execution in a parallel
main-memory environment. In First Int. Conf. on Parallel and Distributed Infor-
mation Systems, pages 68-77. IEEE, 1991.

