Abstract
This paper presents the 2-steps graph which occurs in the parallelization of Gaussian elimination with partial pivoting. We compute the task deadlines and the lower bound of processors popt (n) for executing the task graph in minimal time (n is the size of the considered matrix). Finally, we present an optimal parallel algorithm with two processors.
Chapter PDF
References
E. G. Coffman Jr., P. J. Denning, Operating system theory, Prentice Hall, Englewood Cliffs, NJ, 1973
M. Cosnard, M. Marrakchi, Y. Robert, D. Trystram, Parallel Gaussian elimination on an MIMD computer. Parallel Computing 6 (1988), 275–296
R. E. Lord, J. S. Kowalik, S. P. Kumar, Solving linear algebraic equations on an MIMD computer, J. ACM 30, 1, (1983), 103–117
M. Veldhorst, Gaussian elimination with partial pivoting on an MIMD computer, Journal of parallel and distributed computing 6 (1989), 62–68
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marrakchi, M. (1996). An optimal parallel algorithm for Gaussian elimination. In: Bougé, L., Fraigniaud, P., Mignotte, A., Robert, Y. (eds) Euro-Par'96 Parallel Processing. Euro-Par 1996. Lecture Notes in Computer Science, vol 1124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024794
Download citation
DOI: https://doi.org/10.1007/BFb0024794
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61627-6
Online ISBN: 978-3-540-70636-6
eBook Packages: Springer Book Archive