Abstract
One of the major problems in geometric modeling is the control of shape construction. Indeed, one should be able to construct geometrical forms by combining or manipulating simple entities. This problem is even more important when we deal with fractal geometry. In this paper, we propose some methods for increasing the modeling capabilities of fractal shape constructions. We propose an extension of the IFS model based on the definition of matrices of IFS that provides a constructive approach of fractal shapes.
Chapter PDF
References
M.F. Barnsley. Fractals Everywhere. Academic press, INC, 1988.
J. Berstel and M. Morcrette. Compact representation of patterns by finite automata. In Proceedings of Pixim, pages 387–395, 1989.
K. Culik II and S. Dube. Rationnal and affine expressions for image synthesis. Discrete Appl. Math., 41:85–120, 1993.
S. Duval, M. Tagine, and D. Ghazanfarpour. Modélisation de fractals par les arbres étiquetés. In 3emes journées AFIG, Marseille, pages 125–134, novembre 1995.
C. Gentil. Les Fractales en Synthèse d'Images: le Modèle IFS. PhD thesis, Université Claude Bernard LYON 1, France, 1992.
P. Prusinkiewicz and M.S. Hammel. Automata, languages and iterated function systems. In lecture notes for the SIGGRAPH'91 course: “Fractal modeling in 3D computer graphics and imagery”, 1991.
P. Prusinkiewicz and M.S. Hammel. Escape-time visualization method for language-restricted iterated function systems. In Proceedings of Graphics Interface'92, May 1992.
H.O. Peitgen, H. Jürgens, and D. Saupe. Encoding images by simple transformations. In Fractals For The Classroom, New York, 1992.
J. Thollot. Extension du Modèle IFS pour une Géométrie Fractale Constructive. PhD thesis, Université Claude Bernard LYON 1, France, sept 1996.
J. Thollot and E. Tosan. Construction of fractales using formal languages and matrices of attractors. In Harold P. Santos, editor, Proceedings of Compugraphics'93, pages 74–81, Technical University of Lisbon, december 1993.
J. Thollot and E. Tosan. Constructive fractal geometry: constructive approach to fractal modeling using languages operations. In Proceedings of Graphics Interface'95, Quebec, Canada, pages 196–203, may 1995.
C. Zair and E. Tosan. Fractal modeling using free forms techniques. In Proceedings of Eurographics, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thollot, J. (1997). Set manipulations of fractal objects using matrices of IFS. In: Ahronovitz, E., Fiorio, C. (eds) Discrete Geometry for Computer Imagery. DGCI 1997. Lecture Notes in Computer Science, vol 1347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024843
Download citation
DOI: https://doi.org/10.1007/BFb0024843
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63884-1
Online ISBN: 978-3-540-69660-5
eBook Packages: Springer Book Archive