Skip to main content

Trellis complexity of linear block codes via atomic codewords

  • Decoding Methods and Techniques
  • Conference paper
  • First Online:
Information Theory and Applications II (CWIT 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1133))

Included in the following conference series:

Abstract

The trellis complexity of a linear block code C over a field F is presented for C a subspace of the vector space V=∏ n i=1 V i over F, where V i (1≤i≤n) is a vector space over F. A generator matrix for the Reed-Muller codes is presented which is in trellis oriented form for the minimal L-section trellis diagram.

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada and the Telecommunications Research Institute of Ontario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kasami, T. Fujiwara, Y. Deskai and S. Lin, On structural complexity of the L-section minimal trellis diagram for binary linear block codes, IEICE Trans., E76-A (1993) 1411–1421.

    Google Scholar 

  2. F.R. Kschischang and V. Sorokine, On the trellis structure of block codes, IEEE Trans. Infor. Theory, 41 (1995) 1924–1937.

    Google Scholar 

  3. L.R. Bahl, J. Cocke, F. Jelinek and J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Infor. Theory, 20 (1974) 284–287.

    Google Scholar 

  4. J.K. Wolf, Maximum likelihood decoding of linear block codes using a trellis, IEEE Trans. Inf. Theory, 24 (1978) 76–80.

    Google Scholar 

  5. G.D. Forney, Jr. and M.D. Trott, The dynamics of group codes: state spaces, trellis diagrams, and canonical encoders, IEEE Trans. Infor. Theory, 39 (1993) 1491–1513.

    Google Scholar 

  6. F. Harary, Graph Theory, New York:Addison-Wesley, 1972.

    Google Scholar 

  7. G.D. Forney, Jr., Coset codes part II: binary lattices and related codes, IEEE Trans. Infor. Theory, 34 (1988) 1152–1187.

    Google Scholar 

  8. S. Roman, Coding and Information Theory, Graduate Texts in Mathematics, 134 New York:Springer-Verlag, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean-Yves Chouinard Paul Fortier T. Aaron Gulliver

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esmaeili, M., Gulliver, T.A., Secord, N.P. (1996). Trellis complexity of linear block codes via atomic codewords. In: Chouinard, JY., Fortier, P., Gulliver, T.A. (eds) Information Theory and Applications II. CWIT 1995. Lecture Notes in Computer Science, vol 1133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025141

Download citation

  • DOI: https://doi.org/10.1007/BFb0025141

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61748-8

  • Online ISBN: 978-3-540-70647-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics