Abstract
The trellis complexity of a linear block code C over a field F is presented for C a subspace of the vector space V=∏ n i=1 V i over F, where V i (1≤i≤n) is a vector space over F. A generator matrix for the Reed-Muller codes is presented which is in trellis oriented form for the minimal L-section trellis diagram.
This research was supported in part by the Natural Sciences and Engineering Research Council of Canada and the Telecommunications Research Institute of Ontario.
Preview
Unable to display preview. Download preview PDF.
References
T. Kasami, T. Fujiwara, Y. Deskai and S. Lin, On structural complexity of the L-section minimal trellis diagram for binary linear block codes, IEICE Trans., E76-A (1993) 1411–1421.
F.R. Kschischang and V. Sorokine, On the trellis structure of block codes, IEEE Trans. Infor. Theory, 41 (1995) 1924–1937.
L.R. Bahl, J. Cocke, F. Jelinek and J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Infor. Theory, 20 (1974) 284–287.
J.K. Wolf, Maximum likelihood decoding of linear block codes using a trellis, IEEE Trans. Inf. Theory, 24 (1978) 76–80.
G.D. Forney, Jr. and M.D. Trott, The dynamics of group codes: state spaces, trellis diagrams, and canonical encoders, IEEE Trans. Infor. Theory, 39 (1993) 1491–1513.
F. Harary, Graph Theory, New York:Addison-Wesley, 1972.
G.D. Forney, Jr., Coset codes part II: binary lattices and related codes, IEEE Trans. Infor. Theory, 34 (1988) 1152–1187.
S. Roman, Coding and Information Theory, Graduate Texts in Mathematics, 134 New York:Springer-Verlag, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Esmaeili, M., Gulliver, T.A., Secord, N.P. (1996). Trellis complexity of linear block codes via atomic codewords. In: Chouinard, JY., Fortier, P., Gulliver, T.A. (eds) Information Theory and Applications II. CWIT 1995. Lecture Notes in Computer Science, vol 1133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025141
Download citation
DOI: https://doi.org/10.1007/BFb0025141
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61748-8
Online ISBN: 978-3-540-70647-2
eBook Packages: Springer Book Archive