
Array Distribution in Data-Parallel
Programs

Siddhartha Chatterjee
John R. Gilbert

Robert Schreiber
Thomas J. Shefl:ler

The Research Institute for Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was supported by NASA via Contract NAS 2-13721 between NASA and the Universities

Space Research Association (USRA). Work was performed at the Research Institute for Advanced Computer

Science (RIACS), NASA Ames Research Center, Moffett Field, CA 94035-1000.

Array Distribution in Data-Parallel Programs

Siddhartha Chatterjee * John R. Gilbert _ Robert Schreiber * Thomas J. Sheffler *

Abstract

We consider dism_oution at compile time of the array data in a distributed-memory implementation of a data-

parallel program written in a language like Fortran 90. We allow dynamic redistribution of data and define a heuristic
algorithmic framework that chooses distribution parameters to minimize an estimate of program completion time. We

represent the program as an alignment-distribution graph. We propose a divide-and-conquer algorithm for distribution

that initially assigns a common distribution to each node of the graph and successivelyrefines this assignment, taking
computation, realignment, and redistribution costs into account. We explain how to estimate the effect of distribution

on computation cost and how to choose a candidate set of distributions. We present the results of an implementation

of our algorithms on several test problems.

1 Introduction

One of the major decisions in compiling data-parallel programs for distributed-memory parallel computers is the

mapping of data and computation to the multiple processors of the machine. A good mapping minimizes program
completion time by balancing the opposing needs of parallelism and communication: spreading the data and work

over many processors increases available parallelism, but also increases communication time.
Most compilation systems (e.g., Fortran D [10] and High Performance Fortran [9]) divide the data mapping problem

into two phases: alignment, in which the relative positions of arrays are determined within a Cartesian grid called a
template, and distribution, in which the template is partitioned and mapped to a processor grid. We have dealt with
the alignment problem previously [2, 4, 5]. This paper focuses on the distribution problem.

1.1 Distribution

The distribution of a template specifies for each of its dimensions the number of processors p it is spread across and
the block size k used in the distribution. Template cell i is located at processor (i div k) rood p. The distribution of a

multidimensional template is the tensor product of the distributions of each of its dimensions. The HPF declarations

CHPF$ TEHPLATET(lO0,200)
CItPF$ PI%OCESSORSP(4,8)
CHPF$ DISTRIBUTE T(CYCLIC(1),CYCLIC(IO)) ONTOP

specify the distribution of a template to a 4 x 8 processor grid with block sizes 1 and 10 in the two dimensions. The
mapping of a data array is determined by the composition of its alignment to the template and the distribution of the
template to the processor grid. Note that distributing a template dimension to one processor is equivalent to making
that dimension resident in memory.

The distribution problem is to determine template distribution parameters that minimize the completion time of
the program. There are two variants of the problem, depending on whether or not we allow dynamic redistribution of
templates and data objects.

*Research Institute for Advanced Computer Science. Mail Stop T27A-1. NASA Ames Research Center, Moffett Field. CA 94035-1000

(sc@riacs.edu, schreibr_riaes.edu, sheflter_riacs.edu). The work of these authors was supported by the NAS Systems Division via Contract NAS
2-13721 between NASA and the Universities Space Research Association (USRA).

t Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304-1314 (gilbert_pare.xerox.com). Copyright (_ 1994 by Xerox

Corporation. All rights reserved.

Problem 1 (Static) Given a program and a number of processors, determine a common distribution for all array

objects that minimizes the completion time.

Problem 2 (Dynamic) Given a program and a number of processors, determine the distribution at each definition
and each use of every array object so that the completion time is minimized.

1.2 Problem formulation

In our system, program data flow is represented as a directed, edge-weighted graph called the Alignment-Distribution

Graph (ADG) [3]. It consists of ports, nodes, and edges. Ports represent array objects manipulated by the program,

nodes represent program operations, and edges connect definitions of array objects to their uses. See Section 6 for

examples. Alignment and distribution are attributes of ports (array objects). Each port has an alignment to a template,
and a distribution of the template to a processor grid. With one exception, which is noted in Section 5.3, we treat the

ADG in this paper as an undirected graph.

Nodes constrain the alignments and distributions of their constituent ports. Alignment constraints have been

discussed elsewhere [3]. The distribution constraint at a node is particularly simple: all of its ports must be aligned to

the same template, with the same distribution parameters. It is therefore sensible to speak of of "the distribution at a
node".

The ADG makes communication explicit. Communication occurs when the alignment or distribution is different

at the end points of an edge. ADG edges connect the definition of an object to its uses. Realignment occurs along an

edge when the alignment of the object at the tail of the edge is different from its alignment at the head. Redistribution

occurs along an edge when the distribution of the template at the tail is different from the distribution at the head.

Alignments are chosen in a previous compilation phase, and are considered fixed here. The interaction of alignments

and distributions is quite important in determining good distributions. We cover this topic in Section 5.3.

Let 8 be a mapping from ADG nodes to distributions. The computation time Tco,_p of an ADG node u is a function

of its computation, the sizes of the array objects it computes, the alignments of its ports, and the distribution 6(u) at
the node. The cost of any realignment that occurs on out-edges of an ADG node can be accounted for at the node,

as we show in Section 5.3. Thus, we include a term Tno_c, called a node cost, that accounts for computation and
realignment, in our model of completion time. All our techniques assume that the dependence of node cost T, ode on

distribution can be made explicit. Section 5.3 discusses techniques for doing this.

The redistribution time Trediat of an edge (u, v) depends on the weight wuv of the edge, and the distributions _(u)

and 6(v) of nodes u and v. Specifically, we assume that the cost of redistribution along edge (u, v) is the product of

three terms: a machine parameter p that gives the cost per data item of all-to-all personalized communication; the edge

data weight wuv (the total data volume carried by the ADG edge); and the discrete distance between the distributions

6(u) and 6(v), defined to be 0 if 6(u) equals 6(v) and 1 if they differ. (Section 5.1 provides some empirical evidence
justifying this model.)

Our model of completion time of the ADG G = (V, E) with alignment map a and distribution map 6 is

TIini,h(G , o_, 6) = _ Tnoae(v, or, 5(v)) + __, Treai,t(wuv, 6(u), 5(v)). (1)
vEV (u,v)EB

In the sequel whenever we refer to a "cost" we mean either the node cost Tnoac of an _ node, or the redistribution

time Tredi,t of an edge. To simplify notation, we shall suppress the a in T]ini,h and Tnode in the sequel, since we
assume that a has already been determined, and is not subject to further change.

Given the ADG G and the alignment mapping a, the goal is to determine the distribution mapping 8 that minimizes

the completion time T1ini,h(G , or, ¢5). We shall call a distribution mapping optimal if it minimizes Tlini,h, given G
and c_.

We collect here some definitions and facts from graph theory and linear algebra that we will use in the paper. Let

S C_ V be a subset of the nodes of the ADG. We denote by G(S) the ADG subgraph induced by S. We assume that the

set of candidate distributions D has been determined. (We show in Section 5.2 how to do this.) A distribution mapping
of S is a function 6 : S _ D. It is static if 6(s) is the same for all elements s of S, otherwise it is dynamic. If 6 is

defined on S, we call the set S static or dynamic depending on whether the restriction of 8 to S is static or dynamic.

LetS C_.V be given. Define T, od,(S, d) = _oes T, od_(v, d). We denote by Topt(S) the minimum over all

d E D of Triode (S, d), and call this the static cost of G(S). It is the minimum completion time of G(S), given that all
nodes in S are constrained to have the same distribution, since there is no redistribution when S is static. Define a best

static distribution of the subgraph G(S) as some distribution d that achieves the static cost of G(S).

A partition of S is a set of disjoint subsets of S whose union equals S. We shall primarily deal with partitions
of the nodes of an ADG subgraph G(S) consisting of two subsets, $1 and $2. For such a two-way partition, define

cut(S1, $2) = { (u, v) 6 E I u 6 St, v 6 $2 }, and a redistribution cost cut-cost(S1, $2) = p _(,,._)_t(s_,s?)w,,_.
Let X be any undirected, edge-weighted, n vertex graph with vertices V and edges E. The Laplacian matrix of X

is the symmetric n x n matrix defined by

_Wij,
= wik,

O,

i C jand(i,j) e E
i=j

otherwise.

If we define the weighted adjacency matrix A (X) in the usual manner and the weighted degree matrix D (X) = diag (di),

where di is the sum of the weights of edges incident on vertex i, then L(X) = D(X) - A(X). A Laplacian matrix

has nonnegative eigenvalues, one of which is always zero. If the graph X is connected, then the eigenvalue zero is

simple, and the corresponding eigenvector is the vector e = (1,..., 1)T.
Let z be a real n-vector. We shall make use of p-norms of vectors, defined by

I1 11 = Ix,
i

and the oo-norm, defined by
Ilxll -- max Ixil-

s

Note that the 2-norm is the usual euclidean norm in real n-space, R".

1.3 Previous work

Most of the previous work in this area has concentrated on the static version or on simplified dynamic versions of the

problem. Wholey [16] uses a hill-climbing procedure to determine the distributions for named variables. (A named

variable corresponds, in our formulation, to a subset of the nodes of the ADG. Thus, Wholey considers a restricted

version of the dynamic problem.) Gupta [8] uses heuristic methods to determine the distribution parameters. He
analyzes communication patterns to determine whether block or cyclic distributions are preferable. He then uses an

affinity graph framework to determine block sizes. Finally, he allows at most two array dimensions to be distributed

across the processors, and determines the proper aspect ratio by exhaustive enumeration.
Kremer [12] shows that dynamic distribution is NP-complete. Bixby et al. [1] and Kremer et aL [13] present a

partial, heuristic solution method. They assume that the user provides a decomposition of the program into phases,
which are program fragments that are executed without changing distribution. Dynamic redistribution therefore only

occurs between phases. Their system chooses the distribution of each phase. They solve this restricted problem by

reducing it to 0-1 integer programming.
The techniques we present here, in contrast, do not require the user to provide any decomposition of the program.

We propose, instead, a fast algorithm that first determines node subsets to be given the same distribution and then
determines their distributions.

1.4 Organization of the paper

The remainder of the paper is organized as follows. Sections 2 through 4 discuss our algorithm for determining distri-

butions. Section 5 explains details of cost modeling. Section 6 shows experimental results from our implementation

of the algorithm. Finally, Section 7 presents conclusions and future work.

2 The distribution algorithm

The dynamic distribution problem is to choose a distribution mapping that minimizes completion time Tl_ni,h with

given ADG and alignment mapping. Our formulation of the distribution problem resembles graph partitioning;
but unlike classical graph partitioning problems, there is no intrinsic balance criterion in our problem formulation.

Moreover, the tension between Tnoa, and Treai,, makes this problem interesting. Kremer [12] proved that dynamic

distribution NP-complete. We therefore seek good heuristics rather than exact algorithms for the problem. This section

gives an overview of our algorithm; the next three sections discuss details.
Assume that we have chosen a set D = {61,..., 6a} of candidate distributions. (Section 5.2 discusses how we do

this .)

Algorithm 1 approximately solves the dynamic distribution problem using the divide-and-conquer paradigm. If
it determines that the whole ADG should have a static distribution, then it chooses a best static distribution of G.

Otherwise it partitions the ADG into two subgraphs and recursively determines dynamic distributions for each of them.

The conquer step which follows chooses the better of two alternatives: either the union of these two dynamic subset

distributions, or the best possible static distribution for the whole ADG. Thus, rather than requiring user intervention,

Algorithm 1 automatically finds sets of nodes that it constrains to share a common distribution. It then determines
distributions for these sets. The key to the algorithm is the partitioner, which must choose a partition that groups

strongly related nodes in the same subset.

Algorithm 1 (Top-down partitioning of ADG for distribution analysis.)

Input: S, a set of ADG nodes; D, a set of candidate distributions.

Output: 6, a distribution mapping from S to D; ct, the completion time of set S.

1 sc ¢--" static-cost(G(S))

2 sd _ best-static-distribution(G(S))
3 if termination condition is reached then

4 ct ¢--- sc

5 6(v) _-- sd for each v in S
6 else

7 [St, $2] _-- partition(S)

8 [61, etl] ¢--- Algorithm 1($1, D)

9 [62, ct2] _ Algorithm 1($2, D)
10 dynamic-cut _ {(u,v) _ E lu _ Sl, v _ $2,6_(u) # 62(v)}

11 dynamic-cut-cost ¢--- p _'_(u,v)_dynamic.cut Wuv
12 _D _ etl + ct2 + dynamic-cut-cost
13 if _o < sc then

14 Ct 4.- _D

15 6 +- 61 O 62

16 else

17 ct +-.- sc

18 6(v) ¢-- sd for each v in S
19 endif

20 endif

21 return [6, ct]

The divide phase calls a partitioning routine on line 7 that returns a partition of the node set S into S_ and $2.

The conquer phase calls Algorithm 1 recursively on the subsets $1 and $2 and determines _;D, the completion time

achieved using the given partition, with dynamic distribution of each subset (line 12). If this is less than the static cost

of G(S), we define the distribution mapping as the (disjoint) union of the mapping returned by the recursive calls.
Otherwise, each node of S is mapped to a best static distribution of G(S).

4

Section 3 discusses partitioning strategies, and Section 4 discusses the termination condition.

One might also employ "bottom-up" clustering procedures for finding static subgraphs of G. Such a procedure

would begin with single node subgraphs and merge them. We do not, however, have any experience with such

procedures.

We show in Section 3 that the costs of our implementations of the function partition for an n-vertex subset S

are O(n3). Hence, Algorithm 1 has a worst-case complexity of O(n4). If the partitions we choose turn out to be

well-balanced, however, then its complexity can be as small as O(n3).

3 Partitioning

A core routine of Algorithm 1 is the partitioner, which takes a subset of ADG nodes S and partitions it into two subsets
St and $2. Algorithm 1 then independently computes candidate distribution mappings for the induced subgraphs. Our

key partitioning heurisitic is the following: choose a partition that minimizes rs(S1, $2), which we define to be the

sum of the static costs of $1 and $2 and cut-cost(S1, $2). (The subscript S stands for "static".)
In this section we present two algorithms of polynomial complexity for approximately solving this problem. Both

encode the problem as the minimization of a real-valued function of the vertices of the unit n-dimensional cube, and

both embed this minimization in an easier continuous problem.

The approximately optimal partitions that these two algorithms provide could be improved further by a subsequent

improvement procedure of Kemighan-Lin type, in which nodes are moved from one subset to the other singly, in order

to further reduce xs. We do not yet know its complexity, or whether such postprocessing is worthwhile.

3.1 The partitioning problem as nonlinear multidimensional optimization

In recasting the partitioning problem in matrix terms, we use techniques seen in spectral graph partitioning methods [14].

Let S be an n-vertex subset of ADG nodes. Assume we are given a partition of S into two disjoint subsets S1 and

$2. Let z be an n-vector with elements + 1 and - 1 encoding this partition; nodes corresponding to the + 1 elements

of x belong to SI, while those corresponding to the - 1 elements belong to $2. Let e be the n-vector of all 1 's.

As above, D = {6_,..., 6a} is a given set of candidate distributions. Construct the d x n node-cost matrix C,

such that Cij = Tnoae(j, 61) is the node cost of node j with distribution 6i.

We now formulate the various costs in terms of matrix expressions. The sum of the weights of the edges crossing

the cut is given by ¼_(,_,_)eE wu_ (zu - z_)2, since the term (z,, - z_)2 contributes zero if z_ and x_ have the same
sign and 4 if they have different signs. To write this as a matrix expression, we simplify as follows:

- 2 =
(u,v)eE (u,v)EE (u,v)EE

E 2wuv-_-,ExuAuuxv

(u,,,)_ ,, v

= Ex_d_-Ex_EAu_x_
u u u

-- xT Dx _ xT Ax

= xTLx.

The redistribution cost of edges crossing the cut is therefore ¼PxTLx. To get the static costs of 81 and $2, we need to
extract the nodes belonging to each set. Given that the elements of z are + 1 and -1, we see that the corresponding

elements of thevector ½(e +x) are 1and 0, while those of the vector ½(e - x) are 0 and 1. Element i of the matrix-vector

product ½C(e + x) gives the cost of the +1 partition ff each node in that partition has distribution 6i. The static cost

of $1 is therefore ½nfmi(C(e + x))i, while that of $2 is ½mini(C(e - x))i. We therefore seek to minimize

-_pzlTLx+_I _I (C(e+x))i+l _i (C(e_x))i (2)

5

overthesetof vectorswithelements4-1, not all elements the same. This is the set of vertices of the n-dimensional

unit hypercube, without the two elements e and -e whose elements are all of the same sign. We denote this set by H,_.

Rewrite the matrix C = B - M, where B is a matrix whose entries are a constant b, larger than maxij Cq; M is

the "savings" matrix.
Note that all elements of the products M(e + x) and M(e - x) are nonnegative, as the elements of M are positive

and the elements of (e + z) and (e - x) are nonnegative. Hence,

_i (Cy), = _i ((B-M)y),

= _i (b_"_yj-(My),)
J

= b_-_yi-miax(My)i
i

= b_ y, - llMylloo.
i

The following constrained minimization problem is therefore equivalent to equation (2):

xEH,, 4

Note the two kinds of terms in the cost function. The redistribution term ¼zTLx is sensitive only to the edges of

the ADG. The other two node-cost terms consider only the node characteristics. To see how these various terms affect

the minimization, consider the ladder graph shown in Figure 1. Assume that there are three candidate distributions,

that p = 1, and that the node cost matrix C has the following form:

C

100 100 20 100 1 1]
100 100 20 100 100 100 .

1 1 1 1 100 100

Each column of C gives the cost of a single node in each of the three candidate distributions.

Minimizing just the communication term gives the partition vector z = [1, - 1, 1, - 1, 1, - 1]T, with completion
time = 3 + 102 + 102 m 207. Minimizing only the node terms gives the partition vector x = [1, 1, 1, 1,-1,-1] T,

with completion time - 200 + 4 + 2 m 206. Minimizing all three terms together gives the partition vector x =

[1, 1, - 1, 1, - 1, - lIT, with completion time -- 121 + 3 + 22 -- 146. This demonstrates the insufficiency of minimizing

the node or communication terms individually.

The minimization problem (3) is combinatorial, and may be as hard as the original distribution problem! Our

heuristic approach is to first change the search space to a convex, closed, bounded region of R", and then to replace
the objective function by a differentiable approximation. We present two algorithms of this type for approximately

solving (3).

3.2 Algorithm NL

The first algorithm (called NL for nonlinear) uses techniques from constrained nonlinear optimization to solve (3).

We first change the problem to a continuous version, replacing the _-norm by a 2p-norm for sufficiently large integer

p, and minimizing over the surface of the n-dimensional unit 2p-norm ball rather than over the vertices of the n-

dimensional unit hypercube. 1 We return to the discrete domain by taking the sign of the elements of the solution of

the continuous problem. We need to exclude the positive and negative orthants, since ff all elements of x have the

same sign, no partition is produced. A simple constraint, which we use, is to require that x be orthogonal to e. Let

iT he definition of the p-norm of a vector hlvolves the absolute values of its components. An even-integer p-norm makes the absolute values

unnecessary and is smoothat x = O.

Partition minimizing

computation terms

Cost = 4 + 2 + 200 = 206.

%

20

(
IO0

t

I

I

I

i

100

100

, ' Partition minimizing
!

completion term
I

' Cost = 22 + 3 + 121 = 146.

Partition minimizing

communication term

Cost = 102 + 102 + 3 = 207.

Figure 1: Ladder graph illustrating the roles of computation and communication in partitioning.

Up = {x E R n [eTa = 0,]lz[[p = 1}. The problem thus becomes

rain lpxTLz -- _][M(e + z)ll2 p - 2[[M(e- z)[[2v.
xEu_p 4

(4)

Nonlinear optimization problem (4) can be solved by standard iterative methods like successive quadratic pro-

gramming [6]. While the complexity of each iterative step is independent of p, convergence depends on p. In practice,
choosing p = 2 appears to be adequate.

The cost of partitioner NL depends on p, on the particular minimization procedure, and on n; the dependence on n
is O(n 3) for standard optimization procedures.

3.3 Algorithm CC

In this section we describe an approximate solution technique that may be significantly less costly than Algorithm NL.

The idea in this algorithm (called CC for convex combinations) is to solve approximately the communication-only

problem and the node-only problem in the continuous domain and to then search for the minimizer of equation (3)
among the convex combinations of the two extremal vectors.

The vector that minimizes the communication term xTLz among vectors of unit 2-norm is e (since erLe = 0);

among vectors of unit 2-norm orthogonal to e, its minimizer is the eigenvector of L corresponding to the smallest

nonzero eigenvalue (called the Fiedler vector). We rescale the Fiedler vector to have unit infinity norm, and call it XL.

(Note that finding a single eigenvector is somewhat cheaper than finding all of them.)

As for the node term, we require a vector x such that M(z + e) and M(z - e) are simultaneously large. 2 Note

that M is elementwise positive, so that e maximizes the infinity norm of Mz among vectors z with unit infinity norm.

We therefore expect that e will be far from orthogonal to the right singular vector xl of M corresponding to the largest
singular value. (This is the vector z of unit 2-norm that maximizes the 2-norm of Mz.) By the Perron-Frobenius

theorem [15], zl must have positive elements. The second right singular vector of M maximizes the norm of Mz

among unit vectors z orthogonal to x_. Therefore, if we choose z of infinity norm one in the direction of z2, then both

z + e and x - e will inherit the large component that e has in the direction xl, making both M(x + e) and M(z - e)
large. Call this vector ZM.

We now search along the line between XL and XM for the minimizer, i.e., we seek)t in [0, 1] such that the vector

z = AZL + (1 -- A)XM minimizes the objective function in (3). Since both ZL and ZM are only determined up to sign,

we replace XM by --ZM if necessary to make the two vectors agree in sign in at least one element before beginning

this line search. (Consider, otherwise, the effect of ZM = --ZL.) We explore the search space using golden-section
search [7]. Finally, we revert to the discrete domain by taking the sign of the continuous solution.

Our implementation of CC runs in time O(n3).

4 Termination

The second unspecified element of Algorithm 1 is the termination criterion that determines when to stop dividing.

We could recurse all the way down to single nodes, but this is often unnecessary. In this section, we develop certain

lemmas regarding structural properties of ADG subgraphs that tell us when we can safely stop the recursion.

First, some definitions. A subgraph G(S) of the ADG G is optimally static if some optimal distribution mapping

for G assigns the same distribution to all nodes in S. G(S) is necessarily static ff every optimal distribution mapping
for G assigns the same distribution to all nodes in S.

For v E V, let 6opt(v) be some distribution d that minimizes Tnode(v, d). We call 6_,t(v) local minimum cost
distribution at v. For any S C_ V, let 6opt(S) be a best static distribution of G(S), i.e., some value of d that minimizes

_'_v_s T, od,(v, d).

S is unanimous ff there is a best static distribution 5op_(S) that is also a local minimum cost distribution for each

node v E S; that is, there is some distribution d such that, for all nodes v E S, d = 8opt(v) = 5opt(S).

2we measure l_ngth in the infinity norm; but because of the bound [[z[[_ _<[[z[[2_<nl/2[[z[[oo that holds fat all z • Rn, we can switch to
the 2-norm[Izll2withoutdanger.

Define A(S) as mind _e s T, ode (V, d) - _e s mind Triode(v, d). A(S) gives the difference in node-cost be-
tween placing the entire node set at its best static distribution and placing each node at its local minimum cost

distribution. Clearly, A(S) = 0 if and only if S is unanimous; it is a measure of "dissension" in S. Define O(S) as

min_es(mindg6o,,(v) T,,od_(V, d) - T_od,(v, 6ov_(v))). 8(S) gives the least possible cost of changing the distribution
of a node in S from its local minimum to the distribution of next lowest cost. Let w(S) be the total weight of edges

with exactly one endpoint in S, multiplied by the communication parameter p. Finally, define mincut(S) to be the

smallest possible redistribution cost incurred when S is dynamic, i.e., mincut(S) = rain cut-cost(Sl, $2) where the

minimum is taken over all partitions of S into two nonempty subsets.

Now we prove some lemmas regarding the static properties of subgraphs. Our goal is to prove that a subgraph is

optimally or necessarily static, because then we know that it is safe to terminate the recursion.

If A(S) is large, then it is hard to satisfy all nodes with a single, static distribution. Also, if w(S) is also large,
then the nodes that border S may "pull" its elements toward different distributions. On the other hand, when G(S)

has no low-weight edge cutset, it will be expensive to allow it to be dynamic. These competing factors are directly

comparable, as we now demonstrate.

Lemma 1 (Min-cut) If mincut(S) >_ w(S) + A(S) for a set S, then S is optimally static.

Proof: Suppose mincut(S) > w(S) + A(S), and consider a distribution mapping that assigns different distributions

to two nodes z and y in S. If we modify the given mapping to assign every node in S the distribution 6opt (S), we

pay at most A(S) (for the penalty in node costs) plus w(S) (for the possible increase on edges joining S to the rest
of the graph). Since the original mapping assigned different distributions to z and y, there is some set of edges with

differently-distributed endpoints that separates z and y in S. This cut has cut-cost at least mincut(S); making S static

eliminates that cost. Thus we gain at least as much as we pay.

The next lemma establishes sufficient conditions for a subgraph G(S) to be optimally static in the special case

where it is unanimous. This strengthens Lemma 1 for this case.

Lemma 2 (Unanimous) If set S is unanimous and mincut(S) + 0(S) > w(S), then S is optimally static.

Proof: Consider a distribution mapping of G in which 3 is dynamic. It suffices to show that under the conditions of

the lemma, we can produce a distribution mapping of G that has lower completion time and in which S is static.

Given the proposed dynamic mapping of S, change it to a mapping in which S is colored 6opt (,-.q). In doing so, we

can increase the completion time by at most w(S). (Since S is unanimous, we could not have increased any node cost

by mapping all nodes to distribution 6opt(S).) On the other hand, we have reduced the completion time in two ways:

first, by avoiding the redistribuion costs of the dynamic mapping; and second, by remapping some nodes to their local
minimum cost distributions. The reduction from the first source is at least mincut(S), and that from the second source

is at least 0(S). Thus, we have decreased the completion time by at least much as we could possibly have increased

it, producing a static mapping of S of lower completion time than the initial dynamic mapping. []

The final lemma shows how an optimally static subgraph may be enlarged while remaining optimally static.

Lenuna 3 (Accretion) Let S be optimally static and assume v q_S. Define w(v , S) to be p multiplied by the sum of the

weights of edges connecting v to S, and similarly define w (v, S) as p times the sum of the weights of all other v-incident

edges. Finally, de_e range(v) as (maxd T,_od_(V, d) - mind T, od,(v, d)). If w(v, S) > w(v, S) + range(v), then

S U {v} is optimally static.

Proof: Consider a distribution mapping in which S is static with distribution d and v has a different distribution

d'. Changing the distribution of node v to d reduces the completion time of the mapping by w(v, 3) and raises it by

w(v, S) + range(v). Given the conditions on v, this results in a net reduction in completion time. Hence S Id {v} is

optimally static, tn

Note that the computation involved in verifying the inequalities is dominated by the time taken to find the global

minimum cut mincut(S). A naive algorithm for this would run n single-source single-sink minimum cut computations

(n being the number of nodes in S) for a total cost of O(n 3) or more. Recently, Karger and Stein [11] have recently

developed a probabilistic algorithm for this problem with O(n 2) running time.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Router Communication Times
I I I I I

200000 400000 600000 800000 le+06
Array Size

1.2e+06

Figure 2: Performance of all-to-all personalized communication on the CM-5.

5 Modeling

This section fills in certain details concerning the modeling of the distribution problem. The specific issues covered
here are use of the discrete metric for redistribution cost, choosing candidate distributions, and building the node-cost
matrix C.

5.1 Redistribution cost

Changing distributions typically involves all-to-all personalized communication involving the router in a parallel
machine. Each processor goes through two steps to complete the process: first, it must examine the data it currently
holds, compute the identity of the processor that will hold it in the new distribution, and add it to the message buffer
for that processor; then it must send out all the messages to the network. Rather than build a very detailed model of the

network incorporating routing algorithms, congestion, and the like, we model such communication using the simple
discrete metric. The communication cost is also proportional to the size of the object whose distribution is being
changed. Experimental evidence on the CM-5 shown in Figure 2 reveals that this is an adequate model in practice.
The program timed was written in CM Fortran. It performs a permutation of the columns of a (BLOCK, BLOCK)
mapped square array on a 4 x 8 processor grid.

5.2 Choosing candidate distributions

The optimization framework described for the distribution problem requires a set of candidate distributions. We now
present a heuristic method for generating a reasonable set of distributions based on the characteristics of the array
objects present in a program.

A distribution is a partitioning of a t-dimensional template onto the available processors. A distribution may be
identified with an ordered pair of t-vectors:

((v,,...,p,),(k,,...,k,)).

10

Nb
Nb

X

X

>4

×

X

X

X

X

m

B

m

m

(a) (b)

Figure 3: The interaction of features sizes and block sizes. The program has two arrays, one of size 1000 x 1000,

and the other of 250 x 250 (shown shaded in the lower left comer). The template is distributed across a 2 x 2 grid

of processors. (a) Block sizes are chosen to match the feature size of the larger array. The smaller array ends up on

a single processor. (b) Block sizes are chosen to match the feature size of the smaller array. Both array are equally

distributed across the processor grid. The portions of the arrays held by a specific processor are marked with X.

The first element describes allocation of the processors to the dimensions of the template, and the second gives the

block size in each dimension. Thus, template cell (il,..., it) is located at processor coordinate ((i_ div kl) mod

Pl,..., (it div kt) mod pt).

Generating block sizes requires care. A naive algorithm might simply find the size of the template occupied by the

array objects and generate a few block sizes based on that size. However, it is important to recognize and consider the

different feature sizes of different objects. Consider an example program with one large array of size 1000 x 1000,
and a small array of size 250 x 250, both aligned to the lower left comer of the template. This arrangement is shown

in Figure 3.
Let there be four processors that are to be allocated with two per dimension, that is, (p_, p:) = (2, 2). The size

of the occupied template is the entire large array. A simple blocked distribution over these four processors has block

sizes (500,500). This distribution would balance the distribution of the large array, but would leave the small array

on only one processor. Now consider a distribution suited to the small array: block sizes (125,125). This distribution

balances the elements of both the small array and the large array. The cost matrix entries computed for operations on

the smaller array would reflect this difference in load balance between the two cases. We must generate distributions

that are suited to objects with many different feature sizes and allow the divide-and-conquer partitioning algorithm to

choose the right distribution from this set for each node in the program.
We first calculate the extents of all objects in the program. The extent of an array object is the size of the smallest

t-dimensional box that encloses it over its iteration space. (Note that the size and position of an object may be functions

of loop induction variables.) The extent e of an object is a t-vector.

The collection E of the extents of all objects in the program typically forms a small number of clusters in H t.

We use histogramming to identify these clusters and to select a representative vector for each cluster. Call this set of

representative extents R.
The set R is used to generate a set A of processor allocations. Each element of R gives a ratio with which processors

are divided among the dimensions of the template. We add to this set an allocation that equally divides the processors

11

if it isnot already present. We also add allocations that give only one processor in dimensions for which some extent
has a small value.

Block sizes must be chosen based on the extents of objects and also on the manner in which they are used. If an array

object varies in size over the course of a program (for example, the active part of the matrix in an LU-decomposition)

then a block size of 1 should be examined to achieve load balance over the whole iteration space. Similarly, an array
object used in a stencil computation should have a large block size to minimize shift communication.

We extract sets F1 through Ft of feature sizes from R by projecting individual components. Thus,

F_= {ri I,"e R }.

Additionally, we add a feature size of 1 to Fi ff the size of any object varies in dimension i during program execution.

The set D of candidate distributions is constructed from the sets of processor allocations and feature sizes as
follows:

(Pt,...,Pt) E A }

D = ((Pl,...,P,),([fl/Pl],..., [ft/P,])) fl E. F1

A e Ft

The resulting set of distributions could potentially be very large. This could render the divide-and-conquer

algorithm unusable, because the running times of both our partitioners are sensitive to the number of distributions.

In practice, programs typically have only a few feature sizes, and we generate only a few processor allocations. Our

feeling is that most programs can be analyzed using a few tens of candidate distributions.

5.3 Building the node-cost matrix C

The model, equation (1), for the completion time of an ADG separates the time into a component depending on the

nodes and another component depending on the edges of the ADG.

Nodes perform computation and intrinsic communication. Intrinsic communication is communication that is

performed as a part of the node computation. An example is the communication of values that happens during the

summation of a distributed array. The value of Tco_p (v, a, d) for an ADG node v with distribution d, and with a given

alignment a(v), is determined by finding the largest number of elements held by one processor of the array computed

at v under the mapping (of array elements to processors) d o a(v), and weighting it by the time per element of the

computation done by node v. The only thing that complicates this is that the computation may be performed within

a loop nest, and the sizes of the objects being computed can be functions of loop induction variables. So, in general,

Too,,,, (v, a, d) is a sum over iterations of the compute time of node v at each iteration.

For a given iteration, the maximum processor load is a product over array axes of an array extent divided by an
effective number of processors. The effective number of processors to which an array axis maps may be less that the

corresponding element p_ in the distribution vector, since, with non-unit stride alignments and strided array sections,

subsets of processors may actually hold array data. As an example, consider the following program fragment.

REAL A(4,8), $(4)

INTEGER I, ST

PROCESSORS P(2,4)

DISTRIBUTE A(BLOCK, BLOCK) ONTO P

ST= 1

DOI=I, 3

S = S + SUM(A(:,
ST = ST * 2

ENDDO

I:8:ST), DIN = 2)

12

Themaximumprocessorloadisfouratiterationone,andtwoatiterationstwoandthree.
Edges,ontheotherhand,performrealignmentandredistribution.Anindividualedgemaycarryzeroormore

oftheseformsofcommunication.Sincealignmentsaredeterminedinapreviouscompilationphase,wewouldlike
to treattherealignmentcommunicationasaknownquantity.However,therealignmentcommunicationis still a
functionof distribution.Forexample,ff thereisshiftcommunicationalonganarrayaxisthatismemory-resident,
therealignmentcostis in factzero.Shouldanedgecarryboth realignment and redistribution communication, the

realignment communication can be folded into the general redistribution communication at no additional cost.

With this in mind, we use the following approximation in building the matrix C. Here only, we must be aware of

the direction of the edges of the ADG, which correspond to the direction of data flow. We find the realignment cost

for edge (u, v) assuming distribution d at both head and tail, and add it into the cost Triode (u, d) of node u. Thus, in

equation (1),

uEV (u,v)eE

The cost matrix C is calculated using this definition of T,_ode. It includes the realignment cost of any ADG edge that

carries realignment in the node-cost for the node that is the source of the data communicated. The model is approximate;

it overestimates communication time when an edge carries both realignment and redistribution communication.

Realignment communication comes in three forms. A change of the array axis to template axis map, or of an

alignment stride requires general all-to-all personalized communication; going from a nonreplicated to a replicated

alignment (which is how the spread operator of Fortran 90 manifests itself in our system after the alignment phase)

requires broadcast communication (possibly using a spanning tree algorithm); a change in array offset requires grid
communication. We calibrate the communication characteristics of the machine using three parameters p, a, and t,,

which give the time per word transferred per processor in the three modes of communication. We use these parameters

to scale the maximum processor load in computing realignment time.

6 Experiments

In this section, we compare the performance of partitioning algorithms NL and CC. The test graphs are small, but their

characteristics are representative of genuine applications. We implemented both partitioners in MATLAB, and used

the number of floating point operations (flops) as measured by MATLAB as a measure of the computation involved in

solving a test case.
The first example ADG is the ladder graph shown in Figure 1. In this case, both NL and CC found the minimum-cost

solution shown in Figure 1. However, our implementation of partitioner NL required 59836 flops to find this solution

while our implementation of partitioner CC required 8326 flops.

The next example ADG is shown in Figure 4. It represents the structure seen in multizone applications such as the

simulation of both the fluid dynamics and the structural mechanics on an airplane wing. In such a simulation, we have
two or more data structures that undergo local computation and communication, with occasional transfers of smaller
sets of data between them. A schematic of such a code is as follows.

REAL A(2000,2000), B(5000,5000)

DO I = 1,N
A = _(A)

B(1001:2000, 1) = A(:, 2000)

]3 = g(R)
A(:, 2000) = B(1001:2000, 1)

EIIDDO

The function f encapsulates the structures computation, and function g encapsulates the fluids computation. We
consider two candidate distributions, one being optimal for f and the other being optimal for g. Let the cost vector

for the f-node be 106[1,2] 7" and that for the g-node be 106112, 6IT. The two fanout nodes and two section nodes have

13

4M

411'I 25M

)1

4M 257

25M

8M

t*

5OO

optimal for g

rho

optimal for f

Figure 4: The ADG for the two-zone example, and the cost of its optimal partition and the distributions as a function
of p.

cost zero (no computation is performed there). The cost of the section-assign (SECffi in the figure) nodes is negligible

compared to the cost of the f- and g-nodes, so we take them to be zero as well. The node-cost matrix of the ADG is

I1 0 0 0 12 0 0 0]C=106 2 0 0 0 6 0 0 0 "

Finally, observe that the size of the left and right sections whose values are interchanged is 1,000.

Applying Lemma 1 to the entire ADG, we see that w(G) = 0, A(G) = 106, and mincut(G) = 2000p. If

2000p > 106, then the graph is optimally static, with cost 8 x 106. Otherwise, the ADG should be split down the
middle, for a cost of 2000p + 106 + 6 x 106.

Algorithm 1 with partitioner CC finds this behavior, as shown in Figure 4. Algorithm CC always splits the ADG

into two parts down the middle, but the Algorithm 1 checks this against the best static distribution and chooses the

best static distribution when p > 500. Algorithm NL did not always function reliably; the solution depends on its

initial starting point, and it often seemed to get stuck in local minima. Algorithm CC required about 7,700 flops, while
algorithm NL required between 2.3 x 105 and 2.7 x 106 flops.

The final example is the ADG shown in Figure 5. This example shows the essential features of an alternating-

direction implicit (ADI) iteration. We consider three distributions representing row orientation, block orientation, and
column orientation. The node-cost matrix of the ADG is

C

0 160 160 16 0 640 640 16]0 320 320 16 0 320 320 16 J .0 640 640 16 0 160 160 16

An application of Lemma 1 shows that the ADG should be static at the block orientation ffp > 40 (for a cost of 1,312),
and should be dynamic with the first portion of the computation being performed in the row orientation and the second

portion in the column orientation (for a cost of 672 + 16p).

Again, Algorithm 1 finds the best of the distributions considered, for all p between 10 and 70. Partitioner CC was

14

8

24

24

1312

¢_

I

I

-- I

0 4O

COLUMN

ROW

I I I

rho

BLOCK

Figure 5: The ADG for the ADI example, the cost of its optimal partition and the distributions as a function of p.

15

reliable and required about 1.1 x 104 flops, while partitioner NL occasionally failed to find a minimum, and required

between 9.8 x 104 and 1.4 x 106 flops.

These examples show that our implementation of partitioner NL is still far from stable. We are investigating the

reasons for its aberrant behavior. In any case, partitioner CC requires considerably less computation. The tradeoff

between solution time and solution quality is unclear from these small examples; the heuristic used in partitioner

CC is quite simple-minded, and it seems possible that partitioner NL may outperform it in solution quality for larger

problems.

7 Conclusions

We have formulated the problem of determining data distributions as a partitioning problem on a graph representation

of a program, and have presented a divide-and-conquer algorithm to solve the problem. We have developed two

different partitioning algorithms for use in this method, and have implemented prototypes of both algorithms. Our

tests on some small example programs reveals that these heuristics are reasonable.

We view this work as preliminary. We are currently looking into the effect of weakening the termination criterion

on Algorithm I in order to limit the number of static subsets explored. This may produce a worthwhile acceleration of

Algorithm 1 without worsening the resulting distribution mapping. We are trying to speed up Algorithm CC and are

auditioning other hopefuls for the role of the vector ZM in it. We are also experimenting with a procedure that will

find optimally static subsets a priori, and collapse them before Algorithm 1 is invoked. Finally, we are looking for
more difficult and representative problems.

Acknowledgments

Dan Feng suggested the ideas used in Algorithm NL.

References

[1] Robert Bixby, Ken Kennedy, and Ulrich Kremer. Automatic data layout using 0-1 integer programming.

Technical Report CRPC-TR93349-S, Center for Research on Parallel Computation, Rice University, Houston,
TX, November 1993.

[2]

[3]

[4]

[5]

Siddhartha Chatterjee, John R. Gilbert, and Robert Schreiber. Mobile and replicated alignment of arrays in

data-parallel programs. In Proceedings of Supercomputing'93, pages 420--429, Portland, OR, November 1993.

Also available as RIACS Technical Report 93.08 and Xerox PARC Technical Report CSL-93-7.

Siddhartha Chatterjee, John R. Gilbert,Robert Schreiber, and Thomas J. Sheffler. Modeling data-parallel programs
with the alignment-distribution graph. JournalofProgramming Languages, ??(??):??, ?? 1994. Special issue on

compiling and run-time issues for distributed address space machines. To appear.

Siddhartha Chatterjee, John R. Gilbert, Robert Schreiber, and Shang-Hua Teng. Optimal evaluation of array

expressions on massively parallel machines. In Proceedings of the Second Workshop on Languages, Compilers,

and Runtime Environments for Distributed Memory Multiprocessors, Boulder, CO, October 1992. Published in

SIGPLAN Notices, 28(1), January 1993, pages 68-71. An expanded version is available as RIACS Technical

Report TR 92.17 and Xerox PARC Technical Report CSL-92-11.

Siddhartha Chatterjee, John R. Gilbert, Robert Schreiber, and Shang-Hua Teng. Automatic array alignment

in data-parallel programs. In Proceedings of the Twentieth Annual ACM SIGACTISIGPLAN Symposium on

Principles of Programming Languages, pages 16-28, Charleston, SC, January 1993. Also available as RIACS

Technical Report 92.18 and Xerox PARC Technical Report CSL-92-13.

[6] Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, second edition, 1989.

16

[7] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization. Academic Press, Orlando, FL,
1981.

[8] Manish Gupta. Automatic Data Partitioning on Distributed Memory Multicomputers. PhD thesis, University of

Illinois at Urbana-Charnpaign, Urbana, IL, September 1992. Available as technical reports UILU-ENG-92-2237
and CRHC-92-19.

[9] High Performance Fortran Forum. High Performance Fortran language specification. Scientific Programming,

2(1-2):1-170, 1993.

[10] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD distributed-memory

machines. Communications of the ACM, 35(8):66-80, August 1992.

[11] David Karger and Clifford Stein. On O(n 2) algorithm for minimum cuts. In Proceedings of the 25th Annual

ACM Symposium on Theory of Computing, pages 757-765, 1993.

[12] Ulrich Kremer. NP-completeness of dynamic remapping. Technical Report CRPC-TR93-330-S, Center for

Research on Parallel Computation, Rice University, Houston, TX, August 1993. Appears in the Proceedings of

the Fourth Workshop on Compilers for Parallel Computers, Delft, The Netherlands, December 1993.

[13] Ulrich Kremer, John Mellor-Crummey, Ken Kennedy, and Alan Carle. Automatic data layout for distributed-

memory machines in the D programming environment. Technical Report CRPC-TR93-298-S, Center for Research
on Parallel Computation, Rice University, Houston, TX, February 1993. Appears in Proceedings of the First

International Workshop on Automatic Distributed Memory Parallelization, Automatic Data Distribution and

Automatic Parallel Performance Prediction (AP'93), Vieweg Verlag, Wiesbaden, Germany.

[14] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with eigenvectors of graphs. SlAM

Journal of Matrix Analysis and Applications, 1 l(3):430-452,July 1990.

[15] Richard S. Varga. Matrixlterative Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962.

[16] Skef Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD thesis, School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA, May 1991. Available as Technical Report
CMU-CS-91-121.

17

