
Local Stack Allocation

Martin Maierhofer
School of Science and Technology

University of Teesside
Middlesbrough, TS1 3BA, UK
m. maierhofer@tees, ac. uk

Tel.: -t-44 1642 342494
Fax.: -t-44 1642 342401

M. Anton Ertl
Institut fiir Computersprachen
Technische Universit£t Wien

ArgentinierstraBe 8, A-1040 Wien, Austria
anton~mips, complang, tuwien, ac. aS

Tel.: +43 1 58801 4474
Fax.: -t-43 1 505 78 38

Abstract

Considering the renewed interest in stack machines (in particular, the
Java Virtual Machine), efficient execution of Algol-family languages on this
class of hardware becomes increasingly important. Local variable accesses
in the source language should be translated into stack accesses on the
target machine (in analogy to register allocation on register machines).

In this paper we explore such stack allocation techniques for basic
blocks. We present some improvements to Phil Koopman's stack schedul-
ing, add an instruction scheduler and compare the result with an optimal
stack allocation and instruction scheduling strategy. Stack scheduling in
cooperation with depth first postorder instruction scheduling produces re-
sults close to the optimum. The optimizations discussed in this paper are
profitable only for stack hardware where stack manipulation operations
are faster than local variable accesses.

1 I n t r o d u c t i o n

After Sun introduced the Java programming language and the corresponding
virtual machine (JavaVM, a stack architecture [Sun95]), the interest in stack
machines has grown again. After they fell out of favor in the late seventies,
stack machines were mainly used in the low-profile market of embedded control
applications. Compact code size, low hardware complexity and moderate cost
are the main factors responsible for their success in this area [Koo93]. Support for
the efficient execution of Algol-like high level language code was not considered
to be of much importance in this domain.

Optimizing compilers for register machines perform register allocation to im-
prove code efficiency [Cha81, Bri94]. Register allocation maps the variables used
in a section of code to the machine's registers in order to reduce access times
(because, in general, access to registers is much faster than access to main mem-
ory). Similarly, stack machines would profit from stack allocation, i.e., mapping
variables to the stack.

190

Most current stack processors use a stack buffer to cache the topmost stack
elements for improved performance [Koo89]. In analogy to register machines,
access to these stack elements is faster than access to memory. When compil-
ing Algol-like high level languages to stack machine code, local variables are
usually usually held in the function's stack frame in main memory (similar to
unoptimized code for register machines).

This situation creates an optimization opportunity: instead of loading a vari-
able from main memory onto the stack each time it is used, the compiler can
keep a copy of the variable's value on the stack and reuse this copy in subsequent
operations.

Two properties of stack machines makes this kind of optimization more dif-
ficult than its equivalent for register machines: In contrast to register machine
instructions, which (nowadays) can access any operand in any register, stack
machine instructions usually have their operands implicitly in the top stack
items, in a specific order. Therefore, the stack must be manipulated such that
the operands appear in the right order. Moreover, stack machine instructions
usually consume their operands, so if the operands are needed again later, they
have to be copied first. These properties require that the compiler inserts stack
manipulation instructions; one of the problems in stack allocation is to find an
arrangement of stack items and a schedule for the operations such that the stack
manipulation overhead is minimal.

This paper presents and evaluates local (i.e., basic block) stack allocation
techniques. In [Koo92], Phil Koopman introduces a technique he calls stack
scheduling (Section 4.1.1). Our main contribution in this paper is a meaningful
evaluation of this technique: We developed an optimal scheduler and stack al-
locator for basic blocks (Section 4.2) and compare stack scheduling (combined
with a simple instruction scheduler) to it (Section 5). We also introduce some
improvements to stack scheduling (Section 4.1.2). Section 3 gives an overview
of our optimizer and the related work is discussed in Section 2.

2 Prev ious Work

[Bru75] is one of the first publication dealing with the optimization of stack code.
The paper presents an efficient algorithm for constructing optimal programs for a
limited set of expressions. Similarly, [Pra80] discusses the class of expressions for
which optimal stack code can be generated efficiently. The article concentrates
on the minimal stack depth required for optimal code.

The table driven peephole optimizer of a portable compiler that uses a stack
machine-based intermediate code is discussed in [Tan82]. The paper contains an
extensive set of rules for the optimizer and data about their usage in optimizing
a large amount of Pascal code. [Mas80] also concentrates on peephole optimiza-
tion; the authors describe a converter to transform a dialect of Lisp into code
for an abstract stack machine.

A C compiler for the NOVIX NC4016/6016 stack processor is discussed in
[Mil87]. The compiler makes heavy use of the special features of that processor

191

(e.g. "pseudo registers" supported by the hardware are used as frame pointers).
It also supports the opposite of inlining: semantically equivalent sections of code
are compiled into one common subroutine. Because calls can be executed very
efficiently by stack processors, this technique reduces code size while retaining
high performance. Local variables are not cached in the stack but always re-
loaded from memory; parameters and return values of functions, however, are
passed on the stack.

A similar C compiler for the APD MF1600 processor is covered in [Win88].
Unfortunately, the description of the compiler is very superficial and states only
that "The translator takes full advantage of a target 'Stack' architecture by
[...] allocating storage for all register or auto variables within the Arithmetic
Stack." No details are given on the allocation policy or on the actual method
for reordering the stack elements appropriately.

Finally, [Koo92] introduces stack scheduling, a technique discussed in depth
in Section 4.1. Stack scheduling does not reorder the code, therefore the quality
of its results depends on the ordering of the original code; [Koo92] did not take
this into account; the present paper does. [Koo92] evaluates stack scheduling
by comparing it with extremely bad code that no compiler in its right mind
would generate; we compare it with code produced by Sun's Java compiler,
and with optimal code. Moreover, we also introduce a few improvements (see
Section 4.1.2).

3 Optimizer Overview

The first author has implemented an optimizer for JavaVM code. The code of
a function (or "method" in JavaVM terminology) is optimized in the following
steps:

1. First we divide the code into basic blocks and build a control-flow graph.
Our basic blocks are single-entry, single-exit, as usual; however, we allow
method invocations inside a basic block, because they do not alter the
state of the caller's stack and local variables.

2. A live variable analysis is then performed using an iterative algorithm for
generic data flow equations [Aho86]. This step does not actually optimize
the code, but it is used to gather information that can be used later on to
eliminate stores to dead local variables. For each variable, we determine
the instructions, which reference the variable for the last time before a
store to the variable or the end of the method. These instructions receive
annotations about the variable becoming dead; the annotation is then used
by the other optimization techniques (notably the peephole optimizer and
the optimal stack allocator).

3. A first pass of the peephole optimizer can improve certain instruction se-
quences. Basically, this approach follows a simple "search and replace"
strategy to eliminate inefficient code. Rules are used to tell the optimizer,

192

.

.

.

which instruction sequence can be replaced by semantically equivalent,
but more efficient code. The implementation uses a table driven, flexible
peephole optimizer that can be easily extended with new rules.

The actual optimization of each basic block is perfbrmed by either Koop-
man's stack scheduling or optimal stack allocation as explained in section 4.

The peephole optimizer is used to clean up "messy code" that might have
been produced by the previous optimization. E.g. code sequences like
swap swap may be generated by stack scheduling. Instead of complicating
the stack scheduling algorithm by trying to repair such situations, we let
the peephole optimizer remove the unnecessary instructions.

Finally, the basic blocks of a method have to be retransformed into a single
sequence of stack instructions.

4 Optimization Techniques
Both approaches described in this section are "local" (i.e. each basic block is
optimized separately). As a consequence, a variable needs to be used more than
once in a basic block for these methods to be useful.

4 .1 S t a c k S c h e d u l i n g

4.1.1 The Basic Algor i thm

Phil Koopman was the first to present a stack allocation technique--he called it
stack scheduling I [Koo92]. Basically, stack scheduling substitutes loads of local
variables by stack copying and manipulation instructions. Example 1 shows
a short fragment of Java code in the first column. The third column shows
the corresponding JavaVM code generated by javac -O (a is at index 1 in the
JavaVM locM variable table, b at index 2 and so forth).

Example 1 A fragment of Java/JavaVM code

c = a + b ; () i l o a d _ l

(a) i l o a d _ 2

(a b) i a d d]

(c) istore_3J pa i r
a = b + d ; () i l o a d _ 2 .i

(b) i l o a d _ 4

(b d) i a d d
(a) istore_l

l In fact, K o o p m a n does not const ra in stack scheduling to be of local scope, but he does
not present an a lgor i thm for global stack scheduling ei ther ("I jus t used ad-hoc techniques as
necessary." [Koo92]).

193

Stack scheduling starts by annotating each instruction in a basic block with
information about the stack elements present at run time before executing the
instruction (the stack picture). Column two in example 1 shows the annotations,
with the top-of-stack being rightmost. The optimizer can determine them easily
by symbolically executing the code.

Next, the algorithm tries to pair each load instruction with a preceding in-
struction that has a stack picture that includes the variable to be loaded. Basi-
cally, the optimizer walks through the code searching for load instructions. When
it encounters a load instruction, it searches backwards, examining the stack pic-
tures for an occurrence of the variable referenced by the load instruction. If it
finds such a stack picture, it enters the corresponding instruction together with
the load instruction into a list of pairs, and the algorithm continues to search
for further loads.

When searching for partner instructions of a load instruction, care must be
taken not to use obsolete values of the variable: the search must be terminated
when the examined instruction might alter the variable (this could be an assign-
ment or ±nc instruction).

In example 1, there are four load instructions. The first two load a and b for
the first time respectively, and no partner instruction can be found to create a
pair. The same holds true for iload_4, where d is loaded for the first and only
time in the basic block. When b is reloaded at line five, however, the search
for a partner instruction is successful: because the stack picture of the ±add
instruction at line three includes b, these two instructions can be paired and
inserted into the (hitherto empty) list of pairs.

The next step is to sort the pairs according to the distance between the two
instructions. In example 1 there is not much sorting to do for a single pair. The
idea behind sorting is that stack allocation is more likely to be successful for
instructions that are close to one another, so they should be tried first.

The final step tries to stack-allocate the pairs 2, starting with the pairs with
the smallest distance between the two instructions. A pair of instructions can
be stack-allocated if the following conditions are satisfied:

• The variable can be copied to the bottom of stack by a stack manipulation
right before the earlier instruction (i.e., the one, where the stack picture
includes the variable of interest).

• The copy can be moved from the bottom of stack to the top of stack at
the second instruction (i.e., the load).

If a pair can be stack-allocated, the appropriate stack manipulation instruc-
tion is inserted just before the first instruction of the pair; then the second in-
struction (the load) can be replaced by another stack manipulation instruction
to move the copied stack element to the top of stack (if the stack was empty at
the point of loading, there is no need for manipulating the stack and the load is
just omitted). After stack-allocating a pair, the stack picture of all instructions

2In Koopman's terminology, schedule the pairs.

194

lying in between the first and second instruction of the pair must be updated to
include the newly created stack element.

Example 2 contains the code of example 1 after stack scheduling. Note that
dup_xl 3 has been inserted before the first iadd instruction (remember that this
was the first instruction of the pair we found in example 1). The load instruction
has been omitted; because the copy created by dup_xl already resides at top of
stack at that point, there is no need for a further stack manipulation instruction.
There are no more pairs to stack-allocate, so example 2 shows the final result of
stack scheduling the code of example 1.

Example 2 Code of example 1 after stack scheduling

c = a + b; () iload_l

(a) iload_2

(a b) dup_xl

(bab) iadd

(b c) istore_3

a = b + d ; (b) i l o a d _ 4

(b d) i a d d

(a) istore_l

4.1.2 Improvements

We have developed two simple extensions to the basic algorithm:

• It is not always necessary to put the copy of a variable to the bottom
of stack. Instead, the copy must not be altered by an instruction exe-
cuted between the first and second instruction of the pair to be stack-
allocated. Because of the limited set of stack manipulation instructions
provided by most stack processors, this extension enables the algorithm to
stack-allocate more pairs.

• The second extension deals with searching for pairs. While it is desirable
that the two instructions of a pair are as close as possible, some situations
may require that the partner instruction of a load is not the first one
encountered during the search.

Example 3 A fragment of Java/JavaVM code

b = a + 5 ; () i l o a d _ l

(a) i c o n s t _ 5

(a 5) i a d d "~ J (b) istore-21

c = a; () iload_l

(a) istore_3

3 T h e s tack effect of dup._xt is a b -+ b a b, where t he top-of-s tack is r i gh tmos t .

195

Consider example 3. The basic algorithm would find only one pair of
instructions: (iadd, i loadA). Variable a cannot be copied to the bottom
of stack at the point of occurrence, so this pair cannot be stack-allocated.
If we continue searching for additional partner instructions after finding
the first one, another pair is found: (iconst_5,iload_l). This time, the
pair can be stack-allocated (dup is inserted in front of iconst_5 and the
second i load_l is eliminated) and the extension to the original algorithm
yields optimal code 4.

Situations that can take advantage of the second extension we described in
this section do not occur often. The level of optimization of the JavaVM code
described in section 5 did not deteriorate seriously when we switched off the
extension. We did not implement the first extension.

4.1.3 Instruction Scheduler

When evaluating stack scheduling, we have to take the instruction scheduler into
account. In the present paper, we simply used the schedule as produced by the
Java compiler (javac), which appears to use a simple depth-first tree walk per
statement for instruction scheduling. We also used such an instruction scheduler
for a different stack machine [Mai97], with results similar to those reported here.
Originally we intended to investigate more sophisticated algorithms, but the
good results with the original schedule (see Section 5) convinced us that this is
not necessary.

4.2 O p t i m a l S t a c k A l l o c a t i o n

As a yardstick for evaluating the results of stack scheduling, we have imple-
mented an optimal stack allocator and instruction scheduler. It has exponential
complexity, and is therefore not suited as production optimization, but is still
useful for evaluating the performance of other, more practical algorithms.

For our purposes, optimal code takes less or equal time to execute than any
other code performing the same operations with the same data flow, without
introducing temporary variables. We calculate the time to execute by assuming
the following timing characteristics for each instruction of a schedule:

• Accesses to local variables take three machine cycles.

• Other instructions (in particular, stack manipulations) take one machine
cycle.

4.2.1 Dependence Graphs

For optimal stack allocation, we have to find the optimal combination of any
instruction schedule and any stack allocation. Therefore our main data structure
is a version of the dependence graph known from instruction scheduling.

4Under the assumption tha t stack manipulat ion instructions are cheaper th~n locals ac-
cesses.

196

In the dependence graph the nodes represent the computing instructions,
and the edges represent ordering constraints between them; i.e., there is an edge
from a to b, if a must be executed before b. Example 4 shows the dependence
graph for the code of example 1.

Example 4 Dependence graph for example 1

a b d

The most common (and in our example, the only) edge type in data depen-
dence graphs is the data flow dependence (aka true dependence, read-after-write
dependence). It represents the fact that the first instruction produces data that
the second instruction uses. tn the JavaVM data is passed either through the
stack, through a local variable, or through memory allocated in an object. There
are also edges that represent other dependences: e.g., method calls have to be
performed in the same order as in the original code.

In addition, our data dependence graph contains a table that maps variables
to nodes and vice versa (see example 4); this table specifies which expressions
reside in which variables. It is used for building the dependence graph, and
for generating the assignments to local variables when the dependence graph is
converted into a sequence.

4.2.2 Building the Dependence Graph

The dependence graph of a basic block is built by symbolically executing the
code. This time, the stack upon which the symbolic execution takes place con-
sists of the nodes which represent the value of the corresponding stack element
at run time lEft92]. The table mapping variables to nodes is very useful for
suppressing unnecessary loads of local variables: each time a load is encoun-
tered, we can first check if the graph already contains a node representing the
current value of the variable. If so, it can be used instead of creating a new one.
Common subexpressions in a basic block are easily spotted in a similar fashion:
Before creating a node, the graph is searched for a semantically equivalent node
(i.e. a node with the same operation and child nodes as the one to be created).

4.2.3 Scheduling

In general, the number of schedules of a dependence graph can be very large (in
the worst case--graphs without edges--there are n! schedules of a graph with

197

n nodes). Therefore the problem is to find an optimal element in the set of all
valid schedules.

Usually, an exhaustive search for the optimum is dismissed in favor of heuris-
tics that find a good, but not necessarily optimal solution by following some rules
of thumb [Smo91]. For optimal stack allocation we cannot use such heuristics;
we use an exhaustive search, and employ the following techniques to make it run
faster:

Branch and b o u n d The search tree is pruned if the schedules in a part of the
search tree axe surely worse than the best schedule found so far. Before
the first schedule has been found, a rough estimate of the execution time
is used to separate "good" and "bad" solutions.

El iminat ion of t rees For tree-shaped dependence graphs optimal stack allo-
cation can be performed simply by emitting the code in a depth-first left-
to-right tree walk. Therefore we can replace tree-shaped subgraphs with
single nodes during our search.

Par t i t ion ing of the graph Some graphs consist of independent subgraphs (i.e.
there are no edges between the subgraphs). The subgraphs can be opti-
mized separately and the code for the parts is concatenated to form optimal
code for the whole graph. 5

Ignor ing impossible schedules The operands of an operation represented by
a node are already present in the stack. If the operands cannot be moved to
the proper position for the operation by stack manipulation instructions,
we consider the schedule impossible and ignore it. The alternative is to
save the operands in temporary variables after calculation and reload them
onto the stack when needed--but this is exactly the opposite of what the
optimization tries to do.

In the few cases where the exhaustive search takes too long in spite of these
techniques, it is terminated after a user-specified time limit (per basic block).
If the scheduler has not finished yet, there is no guarantee that the schedule is
optimal. If optimal stack allocation was unable to find any valid schedule at all,
Koopman's stack scheduling is used as fall back method.

When optimizing representative Ja~aVM code (cf. section 5), we found that
for about 1.6% of the graphs no schedule could be found in 5 seconds on a
Pentinm-120 and only a part of the search tree was processed in about 2.7% of
the cases (i.e., the solution is not necessarily optimal).

5 Empirical Results

We have used the optimizer described in section 3 to gather empirical results on
an extensive set of JavaVM code including the class library of the JDK 1.0.2 for

5In contrast, for register machines with instruction level parallelism the scheduler tries to
mix the instructions of various subgraphs to improve resource usage in the processor.

198

Figure 1 Length of the basic blocks in code of the JDK

C

o =

~5
o>

:=
o

100

90

80

70

60

50

40

30

20

10

i ! t i]] I J]]] i i J i I i d i I i P I i I J-I ' ' ' ' i

Block length (instructions)

Linux, 6 the classes of the Java Generic Library (JGL) 1.1, 7 and some benchmarks
which are part of a research project at Washington University. s The results of
the optimization turned out to be very similar for all of these sources, so we
(arbitrarily) use the classes of the JGL as representative JavaVM code in this
section.

The code to be optimized was generated by the j avac Java compiler of
the JDK with optimization turned on. The compiler apparently uses a simple
per-statement depth-first tree-walking instruction scheduler that had to be used
by stack scheduling, because this approach does not have its own instruction
scheduling (see section 4.1.3).

The length of a basic block influences the efficiency of local optimization tech-
niques (in general, the larger the block, the more possibilities for optimization)
and their performance--especially the time needed for an exhaustive search in
optimal stack allocation grows exponentially with the size of basic blocks. Fig-
ure 1 shows the cumulative frequency distribution of the basic block legths for
the class library of the JDK. Most of the basic blocks are quite short: about
50% of the blocks contain no more than four instructions, blocks with at most
ten instructions account for 85% of all basic blocks. Blocks with more than 30
instructions are very rare (about 2%).

Figure 2 shows the instruction distribution in the code for the JGL classes
before and after optimization. Note that we give static instruction frequencies,
i.e., every basic block has the same weight, irrespective of execution frequency.

6http ://www. blackdown, org/j ava-linux, html

7http ://www. objectspace, com/j gl/
8http://www. cs. washington, edu/re search/interpreter s /

199

For clarity, the instructions have been classified in the following categories:

Loads /S tores . This class contains all instructions accessing local variables.

Stack manipula t ions . The JavaVM instructions for stack manipulation are
represented by this class.

Others . This class includes all other instructions (e.g. arithmetic instructions,
. . .) .

F igure 2 Instruction distribution in code of the JGL classes

25000

20000

w

15000
= _

2
10000

5000

N o n e P e e p h o l e Koopman Optimal

Optimization
[m Loads/Stores rlStack manipulations mothers t

T a b l e 1 Instruction distribution in code of the JGL classes

Optimization None
Loads/Stores
Stack manip.
Others
Total
Exec. t ime

Peephole
8063 36.5% 7792 35.3%
793 3.6% 1072 4.8%

12761 57 .8% 12761 57.8%
21617 97 .9% 21625 97.9%
37743 109.6% 37209 108.0%

Koopman Optimal
6383 28.9% 6175 28.0%
2818 12.8% 3219 14.6%

12761 57 .8% 12703 57.4%
21962 99.5% 22097 100.0%
34728 100.8% 34447 100.0%

The first bar in figure 2 shows the code generated by j avac -0 before opti-
mization, the second bar shows the situation after peephole optimization only,
and the last two bars present the code after optimization with Koopman ' s stack
scheduling and opt imal stack allocation respectively. About 37~ of the instruc-
tions are used to load or store local variables before optimization, while they only
account for about 28~ after optimization with either technique. The amount

200

of stack manipulation instructions rises from roughly 4% of the instructions in
unoptimized code to more than 13% after optimization. Table 1 summarizes
the figures; it also contains the time for executing all basic blocks once, where
we assume the timing characteristics described in section 4.2.3 (percentages are
relative to optimal code).

The total number of instructions increases slightly after optimization, which
means that our optimizations are only profitable if stack manipulations are
cheaper than local variable accesses. I.e., it would be useful on simple proces-
sors, that have a small stack buffer, but access local variables in RAM, and
also on self-timed or high-clock-rate processors, where an access to a large local
variable register file is slower than dealing with the few top stack elements. Our
optimizations do not pay off for implementations where local variable accesses
and stack manipulations cost about the same, e.g., in an interpreter.

We also gathered results for an optimization that does not take commuta-
tivity of instructions like iadd into account and compared them with the results
shown above: The variable accesses stay roughly the same, while the number of
stack manipulations increases slightly when commutativity is ignored.

To assess the influence of the block length on the level of optimization that
can be achieved, the results are broken down for varying block lengths in figure 3.
The bars are grouped in sets of three (the first bar representing unoptimized
code, the second one showing code optimized via stack scheduling and the last
one the code after optimization by optimal stack allocation). For each range
of block lengths, we present the instruction distribution in a similar fashion as
in figure 2. Optimization indeed works better for longer blocks; long blocks,
however, are relatively rare (cf. figure 1). Both optimization techniques perform
equally well independent of the block length.

Finally, figure 4 presents results about the usage of stack instructions. Ob-
viously, the number of stack manipulation instructions increases after optimiza-
tion, but the distribution among the instructions changes as well. Most promi-
nently, dup accounts for 85% of all stack manipulations in unoptimized code,
whereas optimization reduces this figure to about 60~. swap and dup_xl are
frequently used for optimization, while the number of pop instructions does not
change significantly. The dup_x2 instruction is not used frequently. Because
dup, swap, and dup_xl are most heavily used, they are candidates for efficient
hardware support in future stack processors.

6 Conclus ion and Further Work

Stack allocation maps variables in source programs to the stack in the executable
program for a stack machine; it is an optimization that is similar to register
allocation for register machines.

In this paper we evaluate Koopman's stack scheduling approach to stack allo-
cation in basic blocks in combination with an instruction scheduler by comparing
it with an optimal instruction scheduler and stack allocator. Our main results
are:

201

Figure 3 Instruction distribution in code of the JGL classes

50 ¸

$,
o~ 40 =

30

e-
o
~ 20

6'1
_e

lo

Q Lt') O Lt~ O tD LFt

"- ~ --'-' ,--~ E ¢~© ¢~° ^
Block length (instructions)

I m Loads/Stores El Stack manipulations B Others]

A simple depth-first post-order tree-walking instruction scheduler (as usu-
ally implemented in simple compilers) works well in combination with
Koopman's stack scheduling.

• This combination produces code that is close to optimal within basic blocks
for machines with high local variable access costs.

This optimization is only profitable for machines where stack manipula-
tions are cheap compared to local variable accesses. If both classes of
instructions cost the same (e.g., on an interpreter), stack allocation within
basic blocks is generally not profitable, because it usually replaces each
local access instruction with one or more stack manipulation instruction.

• We introduce a few improvements to Koopman's stack scheduling.

Further work should concentrate on stack allocation across basic blocks,
which promises many opportunities for further optimization [Koo92], and is
profitable for a wider class of stack machine implementations: E.g, we stack-
allocated the inner loop if the sieve benchmark by hand; this reduced the number
of instructions in the loop from 11 (with seven local variable accesses) to 8 (with
two locals accesses and two stack manipulations), giving a speedup of 20% on
the whole benchmark with the JDK JavaVM interpreter.

202

F igure 4 Stack manipulations in code of the JGL classes

2000

1800

1600

1400

1200

looo
0 8O0

6OO

4OO

2OO

0
pop dup swap dup_xl dup_x2

! • None Ell Peephole [] Koopman [] Optimal]

Acknowledgements

The referees provided valuable comments on the draft version of this paper.
Andi Krall helped us in hand-optimizing the sieve benchmark.

References

[Aho86]

[Bri94]

[Bru75]

[ChaSl]

[Ert92]

Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman. Compilers. Principles,
Techniques, and Tools. Addison-Wesley, Reading, 1986.

Preston Briggs, Keith D. Cooper, Linda Torczon, Improvements to
Graph Coloring Register Allocation. A CM Transactions on Program-
ming Languages and Systems (TOPLAS). Vol. 16, No. 3, May 1994.
Rice University, Houston, 1992.

J. L. Bruno, T. Lassagne. The Generation of Optimal Code for Stack
Machines. Journal of the ACM, Vol. 22, No. 3, July 1975.

Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John
Cocke, Martin E. Hopkins, Peter W. Markstein. Register Allocation
Via Coloring. Computer Languages, Ybl. 6, No. 1, 1981.

M. Anton Ertl. A New Approach to Forth Native Code Generation.
Proceedings of the 1992 Euroforth Conference, Southampton, October
1992.

203

[Ert95a]

[Koo89]

[Koo92]

[Koo93]

[Mai971

[MasS0]

[Mil87]

[PraS0]

[Smo91]

[Sun95]

[Tan82]

[Win88]

M. Anton Ertl. Stack Caching for Interpreters. Proceedings of the ACM
SIGPLAN'95 Conference on Programming Language Design and Imple-
mentation (PLDI), La Jolla, June 1995.

Philip Koopman. Stack Computers: The New Wave. Ellis Horwood,
Chichester, 1989.

Philip Koopman. A Preliminary Exploration of Optimized Stack
Code Generation. Proceedings of the 1992 Rochester Forth Conference,
Rochester, June 1992.

Philip Koopman. Usenet Nuggets: Why Stack Machines? Computer
Architecture News, Vol. 21, No. 1, March 1993.

Martin Maierhofer. Erzeugung optimierten Codes f@ Stackmaschinen.
Diploma thesis, Vienna University of Technology, Vienna, 1997.

Larry M. Masinter, L. Peter Deutsch. Local Optimization in a Compiler
for Stack-based Lisp Machines. Conference Record of the 1980 LISP
Conference, Stanford, 1980. Reprint New York, 1985.

Daniel L. Miller. Stack Machines and Compiler Design. Byte, April
1987.

Bhaskaram Prabhala, Ravi Sethi. Efficient Computation of Expressions
with Common Subexpressions. Journal of the ACM, Vol. 27, No. 1,
January 1980.

Mark Smotherman, Sanjay Krishnamurthy, P. S. Aravind, David Hun-
nicutt. Efficient DAG Construction and Heuristic Calculation for In-
struction Scheduling. Proceedings of the 2~ th Annual International
Symposium on Microarchitecture, Albuquerque, November 1991.

Sun Microsystems Computer Company'. The Java Virtual Machine
Specification, 9 1995.

Andrew S. Tanenbaum, Hans van Staveren, Johan W. Stevenson. Using
Peephole Optimization on Intermediate Code. A CM Transactions on
Programming Languages and Systems, Vol. 4, No. 1, January 1982.

A. Winfield, S. Kelly. A C-to-Forth Translator. EuroFORML'88 Con-
ference Proceedings, Southampton, September 1988.

9http:lljava.sun.com/docslbookslvmspecl

