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Abstract 

Considering the renewed interest in stack machines (in particular, the 
Java Virtual Machine), efficient execution of Algol-family languages on this 
class of hardware becomes increasingly important. Local variable accesses 
in the source language should be translated into stack accesses on the 
target machine (in analogy to register allocation on register machines). 

In this paper we explore such stack allocation techniques for basic 
blocks. We present some improvements to Phil Koopman's stack schedul- 
ing, add an instruction scheduler and compare the result with an optimal 
stack allocation and instruction scheduling strategy. Stack scheduling in 
cooperation with depth first postorder instruction scheduling produces re- 
sults close to the optimum. The optimizations discussed in this paper are 
profitable only for stack hardware where stack manipulation operations 
are faster than local variable accesses. 

1 I n t r o d u c t i o n  

After Sun introduced the Java programming language and the corresponding 
virtual machine (JavaVM, a stack architecture [Sun95]), the interest in stack 
machines has grown again. After they fell out of favor in the late seventies, 
stack machines were mainly used in the low-profile market of embedded control 
applications. Compact code size, low hardware complexity and moderate cost 
are the main factors responsible for their success in this area [Koo93]. Support for 
the efficient execution of Algol-like high level language code was not considered 
to be of much importance in this domain. 

Optimizing compilers for register machines perform register allocation to im- 
prove code efficiency [Cha81, Bri94]. Register allocation maps the variables used 
in a section of code to the machine's registers in order to reduce access times 
(because, in general, access to registers is much faster than access to main mem- 
ory). Similarly, stack machines would profit from stack allocation, i.e., mapping 
variables to the stack. 
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Most current stack processors use a stack buffer to cache the topmost stack 
elements for improved performance [Koo89]. In analogy to register machines, 
access to these stack elements is faster than access to memory. When compil- 
ing Algol-like high level languages to stack machine code, local variables are 
usually usually held in the function's stack frame in main memory (similar to 
unoptimized code for register machines). 

This situation creates an optimization opportunity: instead of loading a vari- 
able from main memory onto the stack each time it is used, the compiler can 
keep a copy of the variable's value on the stack and reuse this copy in subsequent 
operations. 

Two properties of stack machines makes this kind of optimization more dif- 
ficult than its equivalent for register machines: In contrast to register machine 
instructions, which (nowadays) can access any operand in any register, stack 
machine instructions usually have their operands implicitly in the top stack 
items, in a specific order. Therefore, the stack must be manipulated such that 
the operands appear in the right order. Moreover, stack machine instructions 
usually consume their operands, so if the operands are needed again later, they 
have to be copied first. These properties require that the compiler inserts stack 
manipulation instructions; one of the problems in stack allocation is to find an 
arrangement of stack items and a schedule for the operations such that the stack 
manipulation overhead is minimal. 

This paper presents and evaluates local (i.e., basic block) stack allocation 
techniques. In [Koo92], Phil Koopman introduces a technique he calls stack 
scheduling (Section 4.1.1). Our main contribution in this paper is a meaningful 
evaluation of this technique: We developed an optimal scheduler and stack al- 
locator for basic blocks (Section 4.2) and compare stack scheduling (combined 
with a simple instruction scheduler) to it (Section 5). We also introduce some 
improvements to stack scheduling (Section 4.1.2). Section 3 gives an overview 
of our optimizer and the related work is discussed in Section 2. 

2 Prev ious  Work 

[Bru75] is one of the first publication dealing with the optimization of stack code. 
The paper presents an efficient algorithm for constructing optimal programs for a 
limited set of expressions. Similarly, [Pra80] discusses the class of expressions for 
which optimal stack code can be generated efficiently. The article concentrates 
on the minimal stack depth required for optimal code. 

The table driven peephole optimizer of a portable compiler that uses a stack 
machine-based intermediate code is discussed in [Tan82]. The paper contains an 
extensive set of rules for the optimizer and data about their usage in optimizing 
a large amount of Pascal code. [Mas80] also concentrates on peephole optimiza- 
tion; the authors describe a converter to transform a dialect of Lisp into code 
for an abstract stack machine. 

A C compiler for the NOVIX NC4016/6016 stack processor is discussed in 
[Mil87]. The compiler makes heavy use of the special features of that processor 
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(e.g. "pseudo registers" supported by the hardware are used as frame pointers). 
It also supports the opposite of inlining: semantically equivalent sections of code 
are compiled into one common subroutine. Because calls can be executed very 
efficiently by stack processors, this technique reduces code size while retaining 
high performance. Local variables are not cached in the stack but always re- 
loaded from memory; parameters and return values of functions, however, are 
passed on the stack. 

A similar C compiler for the APD MF1600 processor is covered in [Win88]. 
Unfortunately, the description of the compiler is very superficial and states only 
that "The translator takes full advantage of a target 'Stack' architecture by 
[... ] allocating storage for all register or auto variables within the Arithmetic 
Stack." No details are given on the allocation policy or on the actual method 
for reordering the stack elements appropriately. 

Finally, [Koo92] introduces stack scheduling, a technique discussed in depth 
in Section 4.1. Stack scheduling does not reorder the code, therefore the quality 
of its results depends on the ordering of the original code; [Koo92] did not take 
this into account; the present paper does. [Koo92] evaluates stack scheduling 
by comparing it with extremely bad code that no compiler in its right mind 
would generate; we compare it with code produced by Sun's Java compiler, 
and with optimal code. Moreover, we also introduce a few improvements (see 
Section 4.1.2). 

3 Optimizer Overview 

The first author has implemented an optimizer for JavaVM code. The code of 
a function (or "method" in JavaVM terminology) is optimized in the following 
steps: 

1. First we divide the code into basic blocks and build a control-flow graph. 
Our basic blocks are single-entry, single-exit, as usual; however, we allow 
method invocations inside a basic block, because they do not alter the 
state of the caller's stack and local variables. 

2. A live variable analysis is then performed using an iterative algorithm for 
generic data flow equations [Aho86]. This step does not actually optimize 
the code, but it is used to gather information that can be used later on to 
eliminate stores to dead local variables. For each variable, we determine 
the instructions, which reference the variable for the last time before a 
store to the variable or the end of the method. These instructions receive 
annotations about the variable becoming dead; the annotation is then used 
by the other optimization techniques (notably the peephole optimizer and 
the optimal stack allocator). 

3. A first pass of the peephole optimizer can improve certain instruction se- 
quences. Basically, this approach follows a simple "search and replace" 
strategy to eliminate inefficient code. Rules are used to tell the optimizer, 
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which instruction sequence can be replaced by semantically equivalent, 
but more efficient code. The implementation uses a table driven, flexible 
peephole optimizer that can be easily extended with new rules. 

The actual optimization of each basic block is perfbrmed by either Koop- 
man's stack scheduling or optimal stack allocation as explained in section 4. 

The peephole optimizer is used to clean up "messy code" that might have 
been produced by the previous optimization. E.g. code sequences like 
swap swap may be generated by stack scheduling. Instead of complicating 
the stack scheduling algorithm by trying to repair such situations, we let 
the peephole optimizer remove the unnecessary instructions. 

Finally, the basic blocks of a method have to be retransformed into a single 
sequence of stack instructions. 

4 Optimization Techniques 
Both approaches described in this section are "local" (i.e. each basic block is 
optimized separately). As a consequence, a variable needs to be used more than 
once in a basic block for these methods to be useful. 

4 .1  S t a c k  S c h e d u l i n g  

4.1.1 The  Basic  Algor i thm 

Phil Koopman was the first to present a stack allocation technique--he called it 
stack scheduling I [Koo92]. Basically, stack scheduling substitutes loads of local 
variables by stack copying and manipulation instructions. Example 1 shows 
a short fragment of Java code in the first column. The third column shows 
the corresponding JavaVM code generated by javac  -O (a is at index 1 in the 
JavaVM locM variable table, b at index 2 and so forth). 

Example  1 A fragment of Java/JavaVM code 

c = a + b ;  ( ) i l o a d _ l  

( a ) i l o a d _ 2  

( a b ) i a d d  ] 

( c ) istore_3J pa i r  
a = b + d ;  ( ) i l o a d _ 2  .i 

( b ) i l o a d _ 4  

( b d  ) i a d d  
( a ) istore_l 

l In  fact, K o o p m a n  does not  const ra in  stack scheduling to be of local scope, but  he does 
not  present  an a lgor i thm for global stack scheduling ei ther  ("I jus t  used ad-hoc techniques as 
necessary." [Koo92]). 



193 

Stack scheduling starts by annotating each instruction in a basic block with 
information about the stack elements present at run time before executing the 
instruction (the stack picture). Column two in example 1 shows the annotations, 
with the top-of-stack being rightmost. The optimizer can determine them easily 
by symbolically executing the code. 

Next, the algorithm tries to pair each load instruction with a preceding in- 
struction that has a stack picture that includes the variable to be loaded. Basi- 
cally, the optimizer walks through the code searching for load instructions. When 
it encounters a load instruction, it searches backwards, examining the stack pic- 
tures for an occurrence of the variable referenced by the load instruction. If it 
finds such a stack picture, it enters the corresponding instruction together with 
the load instruction into a list of pairs, and the algorithm continues to search 
for further loads. 

When searching for partner instructions of a load instruction, care must be 
taken not to use obsolete values of the variable: the search must be terminated 
when the examined instruction might alter the variable (this could be an assign- 
ment or ±nc instruction). 

In example 1, there are four load instructions. The first two load a and b for 
the first time respectively, and no partner instruction can be found to create a 
pair. The same holds true for iload_4, where d is loaded for the first and only 
time in the basic block. When b is reloaded at line five, however, the search 
for a partner instruction is successful: because the stack picture of the ±add 
instruction at line three includes b, these two instructions can be paired and 
inserted into the (hitherto empty) list of pairs. 

The next step is to sort the pairs according to the distance between the two 
instructions. In example 1 there is not much sorting to do for a single pair. The 
idea behind sorting is that stack allocation is more likely to be successful for 
instructions that are close to one another, so they should be tried first. 

The final step tries to stack-allocate the pairs 2, starting with the pairs with 
the smallest distance between the two instructions. A pair of instructions can 
be stack-allocated if the following conditions are satisfied: 

• The variable can be copied to the bottom of stack by a stack manipulation 
right before the earlier instruction (i.e., the one, where the stack picture 
includes the variable of interest). 

• The copy can be moved from the bottom of stack to the top of stack at 
the second instruction (i.e., the load). 

If a pair can be stack-allocated, the appropriate stack manipulation instruc- 
tion is inserted just before the first instruction of the pair; then the second in- 
struction (the load) can be replaced by another stack manipulation instruction 
to move the copied stack element to the top of stack (if the stack was empty at 
the point of loading, there is no need for manipulating the stack and the load is 
just omitted). After stack-allocating a pair, the stack picture of all instructions 

2In Koopman's terminology, schedule the pairs. 
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lying in between the first and second instruction of the pair must be updated to 
include the newly created stack element. 

Example 2 contains the code of example 1 after stack scheduling. Note that 
dup_xl 3 has been inserted before the first iadd instruction (remember that this 
was the first instruction of the pair we found in example 1). The load instruction 
has been omitted; because the copy created by dup_xl already resides at top of 
stack at that point, there is no need for a further stack manipulation instruction. 
There are no more pairs to stack-allocate, so example 2 shows the final result of 
stack scheduling the code of example 1. 

Example  2 Code of example 1 after stack scheduling 

c = a + b; ( ) iload_l 

( a ) iload_2 

( a b ) dup_xl 

( bab ) iadd 

( b c ) istore_3 

a = b + d ;  ( b ) i l o a d _ 4  

( b d ) i a d d  

( a ) istore_l 

4.1.2 Improvements 

We have developed two simple extensions to the basic algorithm: 

• It is not always necessary to put the copy of a variable to the bottom 
of stack. Instead, the copy must not be altered by an instruction exe- 
cuted between the first and second instruction of the pair to be stack- 
allocated. Because of the limited set of stack manipulation instructions 
provided by most stack processors, this extension enables the algorithm to 
stack-allocate more pairs. 

• The second extension deals with searching for pairs. While it is desirable 
that the two instructions of a pair are as close as possible, some situations 
may require that the partner instruction of a load is not the first one 
encountered during the search. 

Example  3 A fragment of Java/JavaVM code 

b = a + 5 ;  ( ) i l o a d _ l  

( a ) i c o n s t _ 5  

( a 5 ) i a d d  "~ J ( b ) istore-21 

c = a; ( ) iload_l 

( a ) istore_3 

3 T h e  s tack  effect of  dup._xt is a b -+ b a b, where  t he  top-of-s tack is r i gh tmos t .  
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Consider example 3. The basic algorithm would find only one pair of 
instructions: ( iadd, i loadA).  Variable a cannot be copied to the bottom 
of stack at the point of occurrence, so this pair cannot be stack-allocated. 
If we continue searching for additional partner instructions after finding 
the first one, another pair is found: (iconst_5,iload_l).  This time, the 
pair can be stack-allocated (dup is inserted in front of iconst_5 and the 
second i load_l is eliminated) and the extension to the original algorithm 
yields optimal code 4. 

Situations that can take advantage of the second extension we described in 
this section do not occur often. The level of optimization of the JavaVM code 
described in section 5 did not deteriorate seriously when we switched off the 
extension. We did not implement the first extension. 

4.1.3 Instruction Scheduler 

When evaluating stack scheduling, we have to take the instruction scheduler into 
account. In the present paper, we simply used the schedule as produced by the 
Java compiler (javac), which appears to use a simple depth-first tree walk per 
statement for instruction scheduling. We also used such an instruction scheduler 
for a different stack machine [Mai97], with results similar to those reported here. 
Originally we intended to investigate more sophisticated algorithms, but the 
good results with the original schedule (see Section 5) convinced us that this is 
not necessary. 

4.2 O p t i m a l  S t a c k  A l l o c a t i o n  

As a yardstick for evaluating the results of stack scheduling, we have imple- 
mented an optimal stack allocator and instruction scheduler. It has exponential 
complexity, and is therefore not suited as production optimization, but is still 
useful for evaluating the performance of other, more practical algorithms. 

For our purposes, optimal code takes less or equal time to execute than any 
other code performing the same operations with the same data flow, without 
introducing temporary variables. We calculate the time to execute by assuming 
the following timing characteristics for each instruction of a schedule: 

• Accesses to local variables take three machine cycles. 

• Other instructions (in particular, stack manipulations) take one machine 
cycle. 

4.2.1 Dependence Graphs 

For optimal stack allocation, we have to find the optimal combination of any 
instruction schedule and any stack allocation. Therefore our main data structure 
is a version of the dependence graph known from instruction scheduling. 

4Under the assumption tha t  stack manipulat ion instructions are cheaper th~n locals ac- 
cesses. 
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In the dependence graph the nodes represent the computing instructions, 
and the edges represent ordering constraints between them; i.e., there is an edge 
from a to b, if a must be executed before b. Example 4 shows the dependence 
graph for the code of example 1. 

Example  4 Dependence graph for example 1 

a b d 

The most common (and in our example, the only) edge type in data depen- 
dence graphs is the data flow dependence (aka true dependence, read-after-write 
dependence). It represents the fact that the first instruction produces data that 
the second instruction uses. tn the JavaVM data is passed either through the 
stack, through a local variable, or through memory allocated in an object. There 
are also edges that represent other dependences: e.g., method calls have to be 
performed in the same order as in the original code. 

In addition, our data dependence graph contains a table that maps variables 
to nodes and vice versa (see example 4); this table specifies which expressions 
reside in which variables. It is used for building the dependence graph, and 
for generating the assignments to local variables when the dependence graph is 
converted into a sequence. 

4.2.2 Building the Dependence Graph 

The dependence graph of a basic block is built by symbolically executing the 
code. This time, the stack upon which the symbolic execution takes place con- 
sists of the nodes which represent the value of the corresponding stack element 
at run time lEft92]. The table mapping variables to nodes is very useful for 
suppressing unnecessary loads of local variables: each time a load is encoun- 
tered, we can first check if the graph already contains a node representing the 
current value of the variable. If so, it can be used instead of creating a new one. 
Common subexpressions in a basic block are easily spotted in a similar fashion: 
Before creating a node, the graph is searched for a semantically equivalent node 
(i.e. a node with the same operation and child nodes as the one to be created). 

4.2.3 Scheduling 

In general, the number of schedules of a dependence graph can be very large (in 
the worst case--graphs without edges--there are n! schedules of a graph with 
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n nodes). Therefore the problem is to find an optimal element in the set of all 
valid schedules. 

Usually, an exhaustive search for the optimum is dismissed in favor of heuris- 
tics that find a good, but not necessarily optimal solution by following some rules 
of thumb [Smo91]. For optimal stack allocation we cannot use such heuristics; 
we use an exhaustive search, and employ the following techniques to make it run 
faster: 

Branch  and b o u n d  The search tree is pruned if the schedules in a part of the 
search tree axe surely worse than the best schedule found so far. Before 
the first schedule has been found, a rough estimate of the execution time 
is used to separate "good" and "bad" solutions. 

El iminat ion  of  t rees  For tree-shaped dependence graphs optimal stack allo- 
cation can be performed simply by emitting the code in a depth-first left- 
to-right tree walk. Therefore we can replace tree-shaped subgraphs with 
single nodes during our search. 

Par t i t ion ing  of  the  graph  Some graphs consist of independent subgraphs (i.e. 
there are no edges between the subgraphs). The subgraphs can be opti- 
mized separately and the code for the parts is concatenated to form optimal 
code for the whole graph. 5 

Ignor ing impossible  schedules  The operands of an operation represented by 
a node are already present in the stack. If the operands cannot be moved to 
the proper position for the operation by stack manipulation instructions, 
we consider the schedule impossible and ignore it. The alternative is to 
save the operands in temporary variables after calculation and reload them 
onto the stack when needed--but this is exactly the opposite of what the 
optimization tries to do. 

In the few cases where the exhaustive search takes too long in spite of these 
techniques, it is terminated after a user-specified time limit (per basic block). 
If the scheduler has not finished yet, there is no guarantee that the schedule is 
optimal. If optimal stack allocation was unable to find any valid schedule at all, 
Koopman's stack scheduling is used as fall back method. 

When optimizing representative Ja~aVM code (cf. section 5), we found that 
for about 1.6% of the graphs no schedule could be found in 5 seconds on a 
Pentinm-120 and only a part of the search tree was processed in about 2.7% of 
the cases (i.e., the solution is not necessarily optimal). 

5 Empirical  Results  

We have used the optimizer described in section 3 to gather empirical results on 
an extensive set of JavaVM code including the class library of the JDK 1.0.2 for 

5In contrast, for register machines with instruction level parallelism the scheduler tries to 
mix the instructions of various subgraphs to improve resource usage in the processor. 



198 

Figure  1 Length of the basic blocks in code of the JDK 
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Linux, 6 the classes of the Java Generic Library (JGL) 1.1, 7 and some benchmarks 
which are part of a research project at Washington University. s The results of 
the optimization turned out to be very similar for all of these sources, so we 
(arbitrarily) use the classes of the JGL as representative JavaVM code in this 
section. 

The code to be optimized was generated by the j avac Java compiler of 
the JDK with optimization turned on. The compiler apparently uses a simple 
per-statement depth-first tree-walking instruction scheduler that had to be used 
by stack scheduling, because this approach does not have its own instruction 
scheduling (see section 4.1.3). 

The length of a basic block influences the efficiency of local optimization tech- 
niques (in general, the larger the block, the more possibilities for optimization) 
and their performance--especially the time needed for an exhaustive search in 
optimal stack allocation grows exponentially with the size of basic blocks. Fig- 
ure 1 shows the cumulative frequency distribution of the basic block legths for 
the class library of the JDK. Most of the basic blocks are quite short: about 
50% of the blocks contain no more than four instructions, blocks with at most 
ten instructions account for 85% of all basic blocks. Blocks with more than 30 
instructions are very rare (about 2%). 

Figure 2 shows the instruction distribution in the code for the JGL classes 
before and after optimization. Note that we give static instruction frequencies, 
i.e., every basic block has the same weight, irrespective of execution frequency. 

6http ://www. blackdown, org/j ava-linux, html 

7http ://www. objectspace, com/j gl/ 
8http://www. cs. washington, edu/re search/interpreter s / 
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For clarity, the instructions have been classified in the following categories: 

Loads /S tores .  This class contains all instructions accessing local variables. 

Stack manipula t ions .  The JavaVM instructions for stack manipulation are 
represented by this class. 

Others .  This class includes all other instructions (e.g. arithmetic instructions, 
. . .) .  

F igure  2 Instruction distribution in code of the JGL classes 
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T a b l e  1 Instruction distribution in code of the JGL classes 

Optimization None 
Loads/Stores 
Stack manip. 
Others 
Total 
Exec. t ime 

Peephole 
8063 36.5% 7792 35.3% 
793 3.6% 1072 4.8% 

12761 57 .8% 12761 57.8% 
21617 97 .9% 21625 97.9% 
37743 109.6% 37209 108.0% 

Koopman Optimal 
6383 28.9% 6175 28.0% 
2818 12.8% 3219 14.6% 

12761 57 .8% 12703 57.4% 
21962 99.5% 22097 100.0% 
34728 100.8% 34447 100.0% 

The first bar  in figure 2 shows the code generated by j avac  -0  before opti- 
mization, the second bar shows the situation after peephole optimization only, 
and the last two bars present the code after optimization with Koopman ' s  stack 
scheduling and opt imal  stack allocation respectively. About  37~  of the instruc- 
tions are used to load or store local variables before optimization, while they only 
account for about  28~  after optimization with either technique. The  amount  
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of stack manipulation instructions rises from roughly 4% of the instructions in 
unoptimized code to more than 13% after optimization. Table 1 summarizes 
the figures; it also contains the time for executing all basic blocks once, where 
we assume the timing characteristics described in section 4.2.3 (percentages are 
relative to optimal code). 

The total number of instructions increases slightly after optimization, which 
means that our optimizations are only profitable if stack manipulations are 
cheaper than local variable accesses. I.e., it would be useful on simple proces- 
sors, that have a small stack buffer, but access local variables in RAM, and 
also on self-timed or high-clock-rate processors, where an access to a large local 
variable register file is slower than dealing with the few top stack elements. Our 
optimizations do not pay off for implementations where local variable accesses 
and stack manipulations cost about the same, e.g., in an interpreter. 

We also gathered results for an optimization that does not take commuta- 
tivity of instructions like iadd into account and compared them with the results 
shown above: The variable accesses stay roughly the same, while the number of 
stack manipulations increases slightly when commutativity is ignored. 

To assess the influence of the block length on the level of optimization that 
can be achieved, the results are broken down for varying block lengths in figure 3. 
The bars are grouped in sets of three (the first bar representing unoptimized 
code, the second one showing code optimized via stack scheduling and the last 
one the code after optimization by optimal stack allocation). For each range 
of block lengths, we present the instruction distribution in a similar fashion as 
in figure 2. Optimization indeed works better for longer blocks; long blocks, 
however, are relatively rare (cf. figure 1). Both optimization techniques perform 
equally well independent of the block length. 

Finally, figure 4 presents results about the usage of stack instructions. Ob- 
viously, the number of stack manipulation instructions increases after optimiza- 
tion, but the distribution among the instructions changes as well. Most promi- 
nently, dup accounts for 85% of all stack manipulations in unoptimized code, 
whereas optimization reduces this figure to about 60~. swap and dup_xl are 
frequently used for optimization, while the number of pop instructions does not 
change significantly. The dup_x2 instruction is not used frequently. Because 
dup, swap, and dup_xl are most heavily used, they are candidates for efficient 
hardware support in future stack processors. 

6 Conclus ion  and Further Work 

Stack allocation maps variables in source programs to the stack in the executable 
program for a stack machine; it is an optimization that is similar to register 
allocation for register machines. 

In this paper we evaluate Koopman's stack scheduling approach to stack allo- 
cation in basic blocks in combination with an instruction scheduler by comparing 
it with an optimal instruction scheduler and stack allocator. Our main results 
are: 
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Figure  3 Instruction distribution in code of the JGL classes 
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A simple depth-first post-order tree-walking instruction scheduler (as usu- 
ally implemented in simple compilers) works well in combination with 
Koopman's stack scheduling. 

• This combination produces code that is close to optimal within basic blocks 
for machines with high local variable access costs. 

This optimization is only profitable for machines where stack manipula- 
tions are cheap compared to local variable accesses. If both classes of 
instructions cost the same (e.g., on an interpreter), stack allocation within 
basic blocks is generally not profitable, because it usually replaces each 
local access instruction with one or more stack manipulation instruction. 

• We introduce a few improvements to Koopman's stack scheduling. 

Further work should concentrate on stack allocation across basic blocks, 
which promises many opportunities for further optimization [Koo92], and is 
profitable for a wider class of stack machine implementations: E.g, we stack- 
allocated the inner loop if the sieve benchmark by hand; this reduced the number 
of instructions in the loop from 11 (with seven local variable accesses) to 8 (with 
two locals accesses and two stack manipulations), giving a speedup of 20% on 
the whole benchmark with the JDK JavaVM interpreter. 
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F igure  4 Stack manipulations in code of the JGL classes 
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