Skip to main content

Genetic algorithms at the edge of a dream

  • Genetic Operators
  • Conference paper
  • First Online:
Artificial Evolution (AE 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1363))

Included in the following conference series:

  • 157 Accesses

Abstract

This paper describes a dreamy genetic algorithm scheme, emulating one basic mechanism of chronobiology: the alternation of awake and sleeping phases. We use the metaphor of the REM sleep during which the system is widely disconnected from its environment. The dream phase allows the population to reorganize and maintain a needed diversity. Experiments show that dreamy genetic algorithms improve on standard genetic algorithm, for both stationary (deceptive) and non-stationary optimization problems. A theoretical and experimental analysis suggests that dreamy genetic algorithms are better suited to complex tasks than standard genetic algorithms, due to the preservation of the population diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eric Bonabeau and Guy Theraulaz. L'intelligence collective, chapter 8, pages 225-261. Hermes, 1994.

    Google Scholar 

  2. P. Chossat. Les symetries brisées. Ed. Belin, 1996.

    Google Scholar 

  3. P. Collard and J.P. Aurand. DGA: An efficient genetic algorithm. In A.G. Cohn, editor, ECAI'94: European Conference on Artificial Intelligence, pages 487–491. John Wiley & Sons, 1994.

    Google Scholar 

  4. P. Collard and C. Escazut. Genetic operators in a dual genetic algorithm. In ICTAI'95: Proceedings of the seventh IEEE International Conference on Tools with Artificial Intelligence, pages 12–19. IEEE Computer Society Press, 1995.

    Google Scholar 

  5. P. Collard and C. Escazut. Relational schemata: A way to improve the expressiveness of classifiers. In L. Eshelman, editor, ICGA'95: Proceedings of the Sixth International Conference on Genetic Algorithms, pages 397–404, San Francisco, CA, 1995. Morgan Kaufmann.

    Google Scholar 

  6. P. Collard and C. Escazut. Fitness Distance Correlation in a Dual Genetic Algorithm. In W. Wahlster, editor, ECAI 96: 12th European Conference on Artificial Intelligence, pages 218–222. Wiley & Son, 1996.

    Google Scholar 

  7. J. Culberson. Mutation-crossover isomorphisms and the construction of discriminating functions. Evolutionary Computation, 2(3):279–311, 1995.

    Google Scholar 

  8. K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan, 1975.

    Google Scholar 

  9. D. E. Goldberg. Simple genetic algorithms and the minimal deceptive problem. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, pages 74–88. Morgan Kaufmann, Los Altos, California, 1987.

    Google Scholar 

  10. D. E. Goldberg and J. Richardson. Genetic algoritms with sharing for multimodal function optimization. In JA Grefenstette, editor, ICGA'87: Proceedings of the Second International Conference on Genetic Algorithms, pages 41–49. Lawrence Erlbaum Associates, 1987.

    Google Scholar 

  11. J. J Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Trans. Systems, Man, and Cybernetics, 16(1):122–128, 1986.

    Google Scholar 

  12. T. Jones. Crossover, macromutation and population-based search. In L. Eshelman, editor, ICGA'95: Proceedings of the Sixth International Conference on Genetic Algorithms, pages 73–80. Morgan Kaufmann, 1995.

    Google Scholar 

  13. M. Jouvet. Phylogeny of the states of sleep. Acta psychlat. belg., 94:256–267, 1994.

    Google Scholar 

  14. Samir W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, University of Illinois at Urbana-Champaign, 1995. IlliGAL Report 95001.

    Google Scholar 

  15. C. Melhuish and T. C. Fogarty. Applying a restricted mating policy to determine state space niches using immediate and delayed reinforcement. In T. C. Fogarty, editor, Evolutionary Computing: AISB Workshop, volume 865 of Lecture Notes in Computer Science, pages 224–237. Springler Verlag, 1994.

    Google Scholar 

  16. Edmund Ronald. When selection meets seduction. In L. Eshelman, editor, ICGA'95: Proceedings of the Sixth International Conference on Genetic Algorithms, pages 167–173. Morgan Kaufmann, 1995.

    Google Scholar 

  17. J. David Schaffer, Richard A. Caruana, Larry J. Eshelman, and Rajarshi Das. A study of control parameters affecting online performance of genetic algorithms for function optimization. In J. D. Schaffer, editor, ICGA'89: Proceedings of the Third International Conference on Genetic Algorithms, pages 51–60. Morgan Kaufmann, 1989.

    Google Scholar 

  18. M. Sebag and M. Schoenauer. Mutation by imitation in Boolean evolution strategies. In H-M Voigt, W. Ebeling, I. Rechenberg, and H-P Schwefel, editors, PPSN IV: The Fourth International Conference on Parallel Problem Solving from Nature, number 1141 in Lecture Notes in Computer Science, pages 356–365, 1996.

    Google Scholar 

  19. W. M. Spears. Crossover or mutation ? In L. D Whitley, editor, Foundations of Genetic Algorithms 2, pages 221–233. Morgan Kaufmann, San Mateo, CA, 1993.

    Google Scholar 

  20. F. Vavak and T. C. Fogarty. A comparative study of steady state and generational genetic algorithms for use in nonstationary environments. In T. C. Fogarty, editor, Proceedings of Evolutionary Computing, AISB Workshop, number 1143 in Lecture Note in Computer Science, pages 297–304. Springer, 1996.

    Google Scholar 

  21. M. D. Vose and G. E. Liepins. Punctuated equilibria in genetic search. Complex Systems, 5:31–44, 1991.

    Google Scholar 

  22. L. D. Whitley. Fundamental principles of deception in genetic search. In G. Rawlins, editor, Foundations of Genetic Algorithms, pages 221–241. Morgan Kaufmann, San Mateo, CA, 1991.

    Google Scholar 

  23. L. D. Whitley. An executable model of a simple genetic algorithm. In L. D. Whitley, editor, Foundations of Genetic Algorithms 2, pages 45–62. Morgan Kaufmann, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Kao Hao Evelyne Lutton Edmund Ronald Marc Schoenauer Dominique Snyers

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Escazut, C., Collard, P. (1998). Genetic algorithms at the edge of a dream. In: Hao, JK., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds) Artificial Evolution. AE 1997. Lecture Notes in Computer Science, vol 1363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0026591

Download citation

  • DOI: https://doi.org/10.1007/BFb0026591

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64169-8

  • Online ISBN: 978-3-540-69698-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics