Abstract
This paper describes a dreamy genetic algorithm scheme, emulating one basic mechanism of chronobiology: the alternation of awake and sleeping phases. We use the metaphor of the REM sleep during which the system is widely disconnected from its environment. The dream phase allows the population to reorganize and maintain a needed diversity. Experiments show that dreamy genetic algorithms improve on standard genetic algorithm, for both stationary (deceptive) and non-stationary optimization problems. A theoretical and experimental analysis suggests that dreamy genetic algorithms are better suited to complex tasks than standard genetic algorithms, due to the preservation of the population diversity.
Preview
Unable to display preview. Download preview PDF.
References
Eric Bonabeau and Guy Theraulaz. L'intelligence collective, chapter 8, pages 225-261. Hermes, 1994.
P. Chossat. Les symetries brisées. Ed. Belin, 1996.
P. Collard and J.P. Aurand. DGA: An efficient genetic algorithm. In A.G. Cohn, editor, ECAI'94: European Conference on Artificial Intelligence, pages 487–491. John Wiley & Sons, 1994.
P. Collard and C. Escazut. Genetic operators in a dual genetic algorithm. In ICTAI'95: Proceedings of the seventh IEEE International Conference on Tools with Artificial Intelligence, pages 12–19. IEEE Computer Society Press, 1995.
P. Collard and C. Escazut. Relational schemata: A way to improve the expressiveness of classifiers. In L. Eshelman, editor, ICGA'95: Proceedings of the Sixth International Conference on Genetic Algorithms, pages 397–404, San Francisco, CA, 1995. Morgan Kaufmann.
P. Collard and C. Escazut. Fitness Distance Correlation in a Dual Genetic Algorithm. In W. Wahlster, editor, ECAI 96: 12th European Conference on Artificial Intelligence, pages 218–222. Wiley & Son, 1996.
J. Culberson. Mutation-crossover isomorphisms and the construction of discriminating functions. Evolutionary Computation, 2(3):279–311, 1995.
K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan, 1975.
D. E. Goldberg. Simple genetic algorithms and the minimal deceptive problem. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, pages 74–88. Morgan Kaufmann, Los Altos, California, 1987.
D. E. Goldberg and J. Richardson. Genetic algoritms with sharing for multimodal function optimization. In JA Grefenstette, editor, ICGA'87: Proceedings of the Second International Conference on Genetic Algorithms, pages 41–49. Lawrence Erlbaum Associates, 1987.
J. J Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Trans. Systems, Man, and Cybernetics, 16(1):122–128, 1986.
T. Jones. Crossover, macromutation and population-based search. In L. Eshelman, editor, ICGA'95: Proceedings of the Sixth International Conference on Genetic Algorithms, pages 73–80. Morgan Kaufmann, 1995.
M. Jouvet. Phylogeny of the states of sleep. Acta psychlat. belg., 94:256–267, 1994.
Samir W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, University of Illinois at Urbana-Champaign, 1995. IlliGAL Report 95001.
C. Melhuish and T. C. Fogarty. Applying a restricted mating policy to determine state space niches using immediate and delayed reinforcement. In T. C. Fogarty, editor, Evolutionary Computing: AISB Workshop, volume 865 of Lecture Notes in Computer Science, pages 224–237. Springler Verlag, 1994.
Edmund Ronald. When selection meets seduction. In L. Eshelman, editor, ICGA'95: Proceedings of the Sixth International Conference on Genetic Algorithms, pages 167–173. Morgan Kaufmann, 1995.
J. David Schaffer, Richard A. Caruana, Larry J. Eshelman, and Rajarshi Das. A study of control parameters affecting online performance of genetic algorithms for function optimization. In J. D. Schaffer, editor, ICGA'89: Proceedings of the Third International Conference on Genetic Algorithms, pages 51–60. Morgan Kaufmann, 1989.
M. Sebag and M. Schoenauer. Mutation by imitation in Boolean evolution strategies. In H-M Voigt, W. Ebeling, I. Rechenberg, and H-P Schwefel, editors, PPSN IV: The Fourth International Conference on Parallel Problem Solving from Nature, number 1141 in Lecture Notes in Computer Science, pages 356–365, 1996.
W. M. Spears. Crossover or mutation ? In L. D Whitley, editor, Foundations of Genetic Algorithms 2, pages 221–233. Morgan Kaufmann, San Mateo, CA, 1993.
F. Vavak and T. C. Fogarty. A comparative study of steady state and generational genetic algorithms for use in nonstationary environments. In T. C. Fogarty, editor, Proceedings of Evolutionary Computing, AISB Workshop, number 1143 in Lecture Note in Computer Science, pages 297–304. Springer, 1996.
M. D. Vose and G. E. Liepins. Punctuated equilibria in genetic search. Complex Systems, 5:31–44, 1991.
L. D. Whitley. Fundamental principles of deception in genetic search. In G. Rawlins, editor, Foundations of Genetic Algorithms, pages 221–241. Morgan Kaufmann, San Mateo, CA, 1991.
L. D. Whitley. An executable model of a simple genetic algorithm. In L. D. Whitley, editor, Foundations of Genetic Algorithms 2, pages 45–62. Morgan Kaufmann, 1993.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Escazut, C., Collard, P. (1998). Genetic algorithms at the edge of a dream. In: Hao, JK., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds) Artificial Evolution. AE 1997. Lecture Notes in Computer Science, vol 1363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0026591
Download citation
DOI: https://doi.org/10.1007/BFb0026591
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64169-8
Online ISBN: 978-3-540-69698-8
eBook Packages: Springer Book Archive