Skip to main content

Adaptation on the evolutionary time scale: A working hypothesis and basic experiments

  • Methodologies
  • Conference paper
  • First Online:
Artificial Evolution (AE 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1363))

Included in the following conference series:

Abstract

In the pertinent literature, an ongoing discussion can be found about whether evolutionary algorithms are better suited for optimization or adaptation. Unfortunately, the pertinent literature does not offer a definition of the difference between adaptation and optimization. As a working hypothesis, this paper proposes adaptation as tracking the moving optimum of a dynamically changing fitness function as opposed to optimization as finding the optimum of a static fitness function. The results presented in this paper suggest that providing enough variation among the population members and applying a selection scheme is sufficient for adaptation. The resulting performance, however, depends on the problem, the selection scheme, the variation operators, as well as possibly other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeline, P., 1997, Tracking Extrema in Dynamic Environments, in: Proceedings of the Sixth Annual Conference on Evolutionary Programming VI, P.J. Angeline, R.G. Reynolds, J.R. McDonnell, and R. Eberhart (eds.) (Springer-Verlag), pp. 335–345.

    Google Scholar 

  2. Bäck, T., Schwefel, H. P., 1993, An Overview of Evolutionary Algorithms for Parameter Optimization, Evolutionary Computation 1(1):1–23, 1993

    Google Scholar 

  3. De Jong, K.A., 1975, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. Thesis (University of Michigan).

    Google Scholar 

  4. De Jong, K.A., 1993, Genetic Algorithms are NOT Function Optimizers, in: Foundations of Genetic Algorithms 2, L.D. Whitley (ed.) (Morgan Kaufmann Publishers), pp. 5–17.

    Google Scholar 

  5. Fogel, D.B., 1995, Evolutionary Computation: Toward a New Philosophy of Machine Learning Intelligence, (IEEE Press).

    Google Scholar 

  6. Fogel, L.J., 1962, “Autonomous Automata”, Industrial Research, 4:14–19.

    Google Scholar 

  7. Goldberg, D.E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, (Addison-Wesley).

    Google Scholar 

  8. Holland, J., 1992, Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, (MIT Press).

    Google Scholar 

  9. McFarland, D., 1990, What it means for Robot Behaviour to be Adaptive, in: From Animals to Animats, Proceedings of the First International Conference on Simulation of Adaptive Behavior, J.-A. Meyer and S.W. Wilson (eds.) (MIT Press), pp. 22–28.

    Google Scholar 

  10. Menczer, F., Belew, R.K., Willuhn, W., 1995, Artificial life applied to adaptive information agents, in: AAAI Spring Symposium Series: Information gathering from heterogeneous, distributed environments. C. Knowblock, A. Levy, S-S. Chen, and G. Wiederhold (eds.) (AAAI).

    Google Scholar 

  11. Mühlenbein, H., Schlierkamp-Voosen, D., 1993, Predictive Models for the Breeder Genetic Algorithm I. Evolutionary Computation 1(1):25–50.

    Google Scholar 

  12. Rechenberg, I., 1973, Evolutionsstrategie. (Frommann-Holzboog).

    Google Scholar 

  13. Salomon, R., 1996, Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions, BioSystems 39(3):263–278.

    Google Scholar 

  14. Salomon, R., 1996. The Influence of Different Coding Schemes on the Computational Complexity of Genetic Algorithms in Function Optimization, in: Proceedings of The Fourth International Conference on Parallel Problem Solving from Nature (PPSN IV), H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel (eds.) (Springer-Verlag), pp. 227–235

    Google Scholar 

  15. Schwefel, H.P., 1995, Evolution and Optimum Seeking (John Wiley and Sons).

    Google Scholar 

  16. Srinivas, M., Patnaik, L., 1994, Genetic Algorithms: A Survey, IEEE Computer, pp. 17–26.

    Google Scholar 

  17. Thierens, D., Goldberg, D., 1994, Convergence Models of Genetic Algorithm Selection Schemes, in: Proceedings of Parallel Problem Solving from Nature 3, Y. Davidor, H.P. Schwefel, and R. Männer (eds.) (Springer-Verlag), pp. 119–129.

    Google Scholar 

  18. Vavak, F., Fogarty T.C., 1996, A Comparative Study of Steady State and Generational Genetic Algorithms, in: Evolutionary Computing: AISB Workshop, LNCS 1143, T.C. Fogarty (ed.) (Springer Verlag), pp. 297–304.

    Google Scholar 

  19. Volkenstein, M.V., 1994, Physical Approaches to Biological Evolution (Springer-Verlag).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Kao Hao Evelyne Lutton Edmund Ronald Marc Schoenauer Dominique Snyers

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salomon, R., Eggenberger, P. (1998). Adaptation on the evolutionary time scale: A working hypothesis and basic experiments. In: Hao, JK., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds) Artificial Evolution. AE 1997. Lecture Notes in Computer Science, vol 1363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0026605

Download citation

  • DOI: https://doi.org/10.1007/BFb0026605

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64169-8

  • Online ISBN: 978-3-540-69698-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics