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A b s t r a c t .  In this paper we present a probabilistic formalization of the 
instance-based learning approach. In our Bayesian framework, moving 
from the construction of an explicit hypothesis to a data-driven instance- 
based learning approach, is equivalent to averaging over all the (possibly 
infinitely many) individual models. The general Bayesian instance-based 
learning framework described in this paper can be applied with any set 
of assumptions defining a parametric model family, and to any discrete 
prediction task where the number of simultaneously predicted attributes 
is small, which includes for example all classification tasks prevalent in 
the machine learning literature. To illustrate the use of the suggested 
general framework in practice, we show how the approach can be im- 
plemented in the special case with the strong independence assumptions 
underlying the so called Naive Bayes classifier. The resulting Bayesian 
instance-based classifier is validated empirically with public domain data 
sets and the results are compared to the performance of the traditional 
Naive Bayes classifier. The results suggest that the Bayesian instance- 
based learning approach yields better results than the traditional Naive 
Bayes classifier, especially in cases where the amount of the training data 
is small. 

1 I n t r o d u c t i o n  

Machine learning research aims at  construct ing au tomated  methods for deducing 
useful information from sample data.  In principle the work can be divided into 
two main subareas of research. In the first research area, the goal is to find 
useful high-level knowledge representations from the da ta  through explora tory  
da ta  analysis (this descriptive aspect is very related to the research performed in 
the field of data mining [10]). In the second research area, the goal is to predict  
the outcome of some future event by using the  da ta  given. In this paper,  we are 
mot ivated purely by this latter,  predictive aspect  of machine learning. 

The  s tandard  approach to machine learning can be viewed as a three phase  
modeling process. Initially, the models to be considered are restricted to some 
limited set of models, the model family. Examples  of common model families 
include the set of feedforward neural network models, the set of Bayesian net- 
works, or the set of decision trees. In the second phase, some specific model 
class, i.e., a skeleton or a template  s t ructure  for a model without fixing any 
paramete r  values, is selected from the chosen model family. In the third phase, 
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the parameter values for the selected model class are estimated from the sample 
data. The resulting full model (model structure + parameter values) can then 
be used for making predictions. Bayesian probability theory provides a unifying 
theoretically solid framework for choosing a proper model family, model class, 
and parameter instantiation during all the three phases of the machine learning 
process, as discussed for example in [14, 20]. 

In contrast to the traditional (eager) approach described above, in the instance- 
based (also known as the memory-based or the case-based) approach [29, 24,1, 4], 
the learning algorithms base their predictions directly on the sample data, with- 
out producing any specific models of the problem domain. This type of machine 
learning is often referred to as lazy learning, since the algorithms defer all the 
essential computation until the prediction phase [2]. 

For making predictions, instance-based learning algorithms typically use a 
distance function (e.g., Euclidean distance) for determining the most relevant 
data items for the prediction task in question. Some simple function, such as 
majority voting in classification problems, is then used for determining the pre- 
diction from the most relevant data items. It has been shown in various studies 
(see e.g., [23] for references) that this type of an approach in some cases pro- 
duces quite accurate predictions, when compared to alternative machine learning 
methods. The method suffers, however, from several drawbacks when applied in 
practice (see, e.g., the discussion in [32]). Most importantly, the performance of 
instance-based learning algorithms seems to be highly sensitive to the selection 
of distance function to be used as demonstrated in recent work reported in [34, 
13,5]. 

In [32, 31, 26, 25] we proposed a Bayesian framework for instance-based learn- 
ing based on probability theory and the finite mixture model family [9, 33]. The 
approach suggested in those studies can be seen as a "partially lazy" approach [2], 
i.e., a hybrid between the traditional machine learning and the instance-based 
learning approach, which is based solely on the given data. The studies were 
based on the probabilistic viewpoint, where the given data vectors are trans- 
formed into local distributions, which can be seen as sample points in a distri- 
bution space. Thus the predictive distributions required for making predictions 
could then be computed by using the instance-based learning approach in the 
distribution space, i .e, by introducing a probabilistic "distance metric". Some- 
what similar frameworks have been suggested in [16, 30,11,12]. 

The goal of this paper is to present a novel alternative probabilistic formaliza- 
tion of the purely lazy learning approach. The framework suggested here extends 
our earlier results by presenting a Bayesian approach for making (discrete) pre- 
dictions directly from data, without the trans/ormation step between the original 
sample space and the distribution space. Intuitively this new approach is based 
on the following notion: if we wish to make predictions by using only the sample 
data given, avoiding the notion of individual models, from the Bayesian point of 
view we can take this as a requirement for averaging over all the possible models. 

In the Bayesian framework, prediction can be viewed as a missing data prob- 
lem, where the criterion for filling in the missing data (for making the predic- 
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tions) is the integral over all the possible models. Intuitively, the joint probability 
distribution produced by a (possibly infinite) mixture of individual models re- 
flects the true (unknown) problem domain distribution better than any single 
model, thus it should also produce more accurate predictions. In fact, it is known 
that this type of integrated predictions are optimal from the Bayesian point of 
view, given a fixed model family. To avoid terminological confusion it should 
be observed that any type of learning is with respect to some model family. In 
traditional instance-based learning approaches the model family is implicitly in- 
duced by the combination of the distance function and the domain of the data, 
also in the cases where the distance function is allowed to vary locally. 

At first glance the Bayes optimal instance-based learning framework may 
seem to be a computationally infeasible approach - -  after all, the integration 
(summation) may go over an infinite number of models. Nevertheless, it turns out 
that for some simple model families the integral over all the model instantiations, 
i.e., the so called evidence or the marginal likelihood [6], can in fact be solved 
analytically, and calculated with modest computational effort. An example of 
such a model family is the family of Bayesian networks (see e.g. [7, 15]), where the 
model family is determined by defining a set of independence relations between 
the problem domain variables. For more complex model families including those 
with latent variables, there exist several computationally feasible methods for 
approximating the evidence integral - -  see e.g., the discussion in [19]. 

It should be emphasized that we make no claims about having invented 
the idea of making predictions by marginalizing over all the (possibly infinitely 
many) models, which is a known technique in the Bayesian community. The main 
goal of this paper is to point out how the Bayesian formalism can be used for 
developing a theoretically solid framework for instance-based learning. A formal- 
ization of this Bayesian instance-based learning approach is given in Section 2. 
As an illustrative example of our general approach, we demonstrate in Section 3 
how the Bayesian instance-based learning approach can be applied with a set of 
strong independence assumptions underlying a simple Bayesian network model 
structure, the naive Bayes classifier. Section 4 shows the results of an empirical 
comparison between the Bayesian instance-based learning approach presented 
here, and the traditional approach, based on a single maximum a posteriori 
model, in this special case. The tests were performed by using publicly available 
real-world classification datasets. 

2 B a y e s i a n  I n s t a n c e - B a s e d  L e a r n i n g  

Let D denote a random sample of N i.i.d. (independent and identically dis- 
tributed) data vectors d l , . . .  ,dN. For simplicity, we assume here that the data is 
coded by using only discrete, i.e., finite-valued, attributes X1, . . .  , Xm, although 
the Bayesian approach described can be extended to continuous attributes as 
well. More precisely, we regard each attribute Xi as a random variable with 
possible values from the set {xil, . .  • , Xin~ }. Consequently, each data vector d is 
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represented as a value assignment of the form (X1 = x i , . . .  ,Xm = Xm), where 
e , }. 
In the following, let M denote a model ]amily, a set of models each de- 

termining some probability distribution on the problem domain. Examples of 
model families include the set of feedforward neural network models, the set of 
Bayesian networks, and the set of decision trees. For notational convenience, it 
is often useful to partition the models within a model family .i4 to some num- 
ber of subsets, model classes, where all the models within a model class share 
the same parametric form (the same number of parameters). Consequently, the 
model classes usually correspond to some specific model structure. Examples of 
such structures are the topology of a feedforward neural network, a Bayesian 
network, or a decision tree. A model 0 is here defined as a parameter instanti- 
ation within some model class M, fully determining a probability distribution 
in the data vector space. Consequently, a single model is defined by fi~ng the 
parameters attached to a given model structure, e.g., by fixing the weights of a 
neural network architecture or the decision rules of a decision tree. 

In traditional (eager) machine learning, the model family, model class, and 
the model parameters must all be fixed in order to produce a single model for 
making predictions. Bayesian probability theory provides a theoretically solid 
framework for these tasks, as demonstrated, e.g., in [21] in the neural network 
model family case, and in [32] in the finite mixture model family case. In the 
Bayesian approach, the model parameters to be used within a model class M 
are taken to be the maximum a posteriori (MAP) values (9 of the parameters, 

~) = argmoaxP(6) I D, M , M  ). 

Similarly, the model class to be used is the class with the maximal posterior 
probability, 

= argmaxP(MID,  M ). 

Nevertheless, as 

P(M I D, M) = P(D I M ' M ) P ( M  I M) 
P(D ] M)  ' 

it is sufficient to find the model class M maximizing P(D I M, M),  the evidence 
or marginal likelihood of the data, 

= I F ( D ]  ~),M,M)P((9 ] M,M)d(9, (1) P(D C M, M) 

assuming that all the model classes are equally probable a priori. 
In principle, the model family can be chosen by maximizing a similar posterior 

probability P(A4 ] D) over all model families A4, 

P(M ] D) = ~ P(.M,M~ ]D). 
k 
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Nevertheless, computing the model family posterior probability for all the possi- 
ble model families is obviously intractable in practice. Instead, some individual 
model family, determined by a set of assumptions made about the problem do- 
main, is normally fixed in advance. The assumptions are based on some prior 
knowledge, or just on practitioner's personal preferences. 

Having fixed the model family vV[, model class .~/, and the model parame- 
ters ~), the Bayes optimal predictive distribution for a new test vector d is the 
conditional distribution 

P(d ] D, (-9,M,M) = P(d,D [ (0,217/,M) 
P(D [ (9, ~/, M/l) (2) 

^ ^ 

As the probability P(D I O, M, M) can be regarded as a constant with respect 
to the test vector d, for predictive purposes it is sufficient to be able to compute 
the joint probability distribution P(d, D [ O, 2tT/,A4). In the sequel, we call 
distribution (2) the MAP predictive distribution. 

In instance-based lazy learning approach, on the other hand, we wish to base 
our predictions directly on the data D, without having to determine individual 
models 69. In the Bayesian framework, we can express this by marginalizing 
out the individual models - -  in other words, instead of computing the MAP 
predictive distribution (2), we wish to compute 

P(d I D, l~l, M) = / P(d ] D, O, 1~i, M)P(O I D, l~l, M)dO. (3) 

Furthermore, if tile model class M is not to be fixed, we need to sum over 
different model classes within the chosen model family, yielding 

P(d I D , M )  = ~_,P(d l D ,Mk,M)P(Mk I D ,M) .  
k 

(4) 

In the sequel, by Bayesian instance-based learning (BIBL) we mean the approach 
based on formulas (4) and (3). 

Note that formula (4) offers a formal motivation for the idea of model aver- 
aging (see, e.g., [22, 3] and the references therein), i.e., for combining multiple 
predictors for increasing the prediction accuracy: the individual predictions P(d ] 
D, Mk, M )  produced by different predictors Mk (for example, model classes de- 
termined by different decision tree structures), are combined by summing the 
individual predictions weighted by the model class probabilities P(Mk ] D, M/l). 
As a matter of fact, from the probability theory point of view the Bayesian 
instance-based learning predictive distribution (4) produces optimally accurate 
predictions within the chosen model family. In [17, 18], we described how the 
recently published new coding scheme by Rissanen [28] for representing the 
stochastic complexity measure [27] offers an alternative definition for an optimal 
predictive distribution. This definition can be justified by information theoretic 
arguments, but this approach will not be addressed in this paper. 
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3 Bayesian IBL with the Naive Bayes Assumptions 

For notational simplicity, in the sequel we drop the variable names, and denote 
a value assignment (X1 = Xl , . . .  ,Xm-1 = xm-t)  by writing (x t , . . .  ,Xm-1). In 
addition, instead of explicitly stating for each specific model the corresponding 
model class M and model family M ,  we use P(. [ O) for denoting P(. [ O, M, M) .  

The MAP predictive distribution distribution (2), and the BIBL predictive 
distribution (4) can be used for solving various predictive inference problems. 
As an example, let us consider the standard classification problem, where the 
goal is to predict the value of the class variable, denoted here by Xm, given the 
values of other variables X1, . . .  , Xm-1. In the MAP case (using a given MAP 
model O), we need to find a classification Xm (value assignment for variable Xm) 
maximizing the conditional probability 

P(xm [ X l , . . .  , Xm-1, D, ~)) oc P(xm, x l , . . .  , Xm-1 [ D, ~9) = P(d  [ D, 0) ,  (5) 

denoting d = (Xm, X l , . . . ,  xm-1). Consequently, the resulting conditional prob- 
ability is a predictive distribution of the form (2). Equivalently, in the BIBL case 
we wish to compute 

P(xm ] x l , . . .  , x m - I , D , M )  oc P(x ,~ ,Xl , . . .  ,Xm-1 I D , M ) ,  (6) 

which corresponds to formula (4). 
As an illustrative example of the Bayesian instance-based learning approach, 

in the following let us consider the model family determined by the set of inde- 
pendence assumptions underlying behind the well-known Naive Bayes classifier. 
In this case, the variables X I , . . .  , Xm-1 are assumed to be independent given 
the value of the class variable Xm. It follows that the joint probability distribu- 
tion for a data vector d can be written as 

m - - 1  

P(a l O) = P(X l , . . .  , Xm [ O) = P(Xm) H P(xi  [ Xm). 
i----1 

Consequently, in the Naive Bayes model family, a single predictive distribution 
can be uniquely determined by fixing the values of the model parameters O = 
(a, 4~), where 

a = ( a l , . . .  ,aK) and • = (~11,... , ~ lm , . . .  ,q~K1,... ,~SKm), 

K (= nm) is the number of possible values for the class variable Xrn, and 

ak = P(Xm = xmk), #ki = (¢kil , . . .  , ¢~i,,), 

where Cka = P(X~ = xa [ Xm = Xm~). 
In the following we assume that ak > 0 and Cka > 0 for all k,i, and l. Further- 

more, both the class variable distribution P(Xm) and the intra-class conditional 
distributions P(Xi  [ Xm = x,nk) are multinomial, i.e., Xrn ~ Multi(l; a l , . . .  , ag) ,  
and X~I k ,~ Multi(l; Ckil, . . .  ,eking). Since the family of Dirichlet densities is 
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conjugate  (see e.g., [8]) to the family of multinomials, i.e., the functional form 
of parameter distribution is invariant in the prior-to-posterior transformation, 
we assume that  the prior distributions of the parameters are from this fam- 
ily. More precisely, let ( a l , . . .  , aK) "~ Di (#1,- . .  , t tK),  and (¢ki l , . . .  , ¢ k ~ , )  "~ 
Di(ak~l , . . .  , ak in , ) ,  where {#k ,ak i l  I k = 1, . . .  , K ; i  = 1 , . . .  , m ; l  = 1 , . . .  ,h i )  
are the hyperparameters  of the corresponding distributions. Assuming that  the 
parameter vectors c~ and ~ki are independent, the joint prior distribution of all 
the parameters O is 

g m - 1  

Di( t t l , . . .  , #g )  H H Di ( ak i l , . . .  , a k i n , ) .  
k-~l  i = 1  

Having now defined the prior distribution, the predictive distributions (2) 
and (4) can be written more explicitly. Let d[k] = ( X m  = Xmk,  q)  denote a data  
vector where the values of variables X1 , . . .  , X m - 1  correspond to the given query 
q, and the value of the class variable X m  is set to x m k .  The MAP predictive 
distribution (2) needed for computing the predictive distribution (5) for d[k] is 
in the Naive Bayes case 

m 

P(d[k]  I D ,  ~)) i.i.d. P(d[k]  I ~)) = &k H Ckix,, where (7) 
i = l  

hk ~- #k  -- 1 ^ fkil  + •kil -- 1 
&k = ¢kit = K K ' x-~n~ a ' N + ~ k ' = l  Pk' -- hk + ]-~Z=l kil -- n i  

and hk and fkit are the suf f ic ient  s ta t is t ics  of the training data  D: hk is the 
number of data  vectors in D where Xm = Xmk, and fk~t is the number of data  
vectors where Xm = Xmk and Xi = x~z. If we assume a uniform prior distribution 
for the parameters, we get &k = h k / N ,  Ckiz = fk~t /hk ,  which produces the 
standard maximum likelihood Naive Bayes classifier with the parameters set 
according to the relative frequencies of different variable values. 

The above analysis gives us the Bayesian maximum posterior probability 
answer to the question of how to determine the parameters of the Naive Bayes 
classifier. We now turn our focus on the BIBL case. First it should be noted that  
the formal assumptions listed above can be expressed by, e.g., using a simple 
two-level tree-structured Bayesian network, where the class variable corresponds 
to the root of the tree, and the other variables form the leaves. This means that  
the Naive Bayes assumptions determine a single model class M, so there is no 
need to sum over the model classes in (4), and hence the predictive distribution 
(4) reduces to (3). Producing this predictive distribution corresponds to the case 
where instead of using a single set of parameters for the Naive Bayes classifier, 
as in the MAP predictive distribution (7), we sum over all the (infinitely many) 
parameter alternatives for the Naive Bayes classifier. As shown in [7, 15, 19], 
with the assumptions listed above the marginal likelihood (1) of the data  can be 
computed by 
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P ( D I M )  = (N K •k) C(~uk) F + ~k=l k=l 

- - -  " '  ] '  (s) •  =IH ,=,H \ r + Z,Z_ 

where r ( . )  denotes the gamma function, a generalization of the common facto- 
rial function. By using this result it is relative easy to see that the predictive 
distribution (4) can in this case be written as 

m 

/ P(g[k] ] O, D, .A4)P(O ] D, .h4)dO = ~k H Sk,x,, (9) P(d[k] I D, At) 
i----1 

where the parameters as  and Ckixi are set to their expected (not. maximum 
probability) values: 

6~k = ha + #k Ck~l = fkiz + ak~t 
g t ' " " N + ~-,~'=1 Pk hk + ~'~=1 akil 

Consequently, in this special case the BIBL approach leads to the somewhat 
surprising result that if one wishes to sum over all the possible Naive Bayes clas- 
sifters (summing over all the infinitely many parameter settings), the resulting 
predictive distribution is the same as the one obtained by using a single Naive 
Bayes classifier where the parameters axe set to their expected values[ Hence the 
time and space complexity requirements of the BIBL approach are in this case 
exactly the same as with the standard Naive Bayes classifier. Nevertheless, it 
is important to realize that this phenomenon is not true in general, and only 
caused by the specific independence assumptions made above - -  with other sets 
of assumptions the BIBL approach would not necessarily lead to a predictive 
distribution that can be obtained by using a single model. 

4 Empirical Results 

To validate the Bayesian instance-based learning approach described in the pre- 
vious sections, we performed a series of experiments with a set of public domain 
classification datasets from the UCI repository I. Each classification query was 
classified by using both the single MAP Naive Bayes model with uniform priors 
(MLNB) given by formula (7), and the Bayesian IBL approach with the Naive 
Bayes assumptions (BIBL) defined in (9), again with uniform priors. Description 
of the datasets used, and the results obtained can be found in Table 1. The re- 
sults are averages over 100 independent crossvalidation runs, and the number of 

x http://www.ics.uci.edu/~mlearn/ 
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folds used was the same as in [23]. By the 0/1-score we mean the relative number 
of the correct classifications made, while the log-score is obtained by comput- 
ing minus the logarithm of the probability given to the correct class (thus the 
smaller the score, the better the result). 

Table 1. The datasets used in the experiments, and the averages of the corresponding 
crossvalidated classification accuracies obtained. 

0/1-SCORE LOG-SCORE 
CV 100% data 10% data 100% data 10% data 

Dataset N m K folds MLNB BIBLIMLNB BIBL MLNB BIBLIMLNB BIBL 
0.7 Australian 690 15 2 10 

Breast cancer 286 10 2 11 
Diabetes 768 9 2 12 
Glass 214 10 6 7 
Heart disease 270 14 2 9 
Hepatitis 150 20 2 5 
Iris 150 5 3 5 
Lymphography 148 19 4 5 
Primary tumor 339 18 21 10 

85.0 84.9 
71.7 72.3 
75.7 75.7 
66.9  66.4 
83.4 84.1 
84.1 81.5 
93.4 94 .4  
78.9 84.3  
45.7 48.8 

76.2 83.0 
62.3 69.4 
70.4 72.4 
38.5 50.5 
70.1 80.0 
63.1 78.6 
77.5 94.1 
39.3 72.2 
20.9 32.2 

0.5 
2.5 0.6 
0.6 0.5 
7.5 1.0 
1.2 0.4 
4.2 0.7 
1.9 0.1 
5.7 0.4 
18.5 2.0 

9.5 0.5 
16.1 0.8 
8.1 0.6 
17.2 1.6 
14.1 0.5 
3.4 0.7 
2.9 0.2 
6.8 0.7 

38.8 3.0 

To see how the methods rely on the size of the data  set available for training, 
we repeated the 100 independent crossvMidation runs, but  used at each stage 
of the crossvalidation cycle only a (randomly selected) subset of the data  in 
the training folds for classifying the data  in the test fold. In Table 1 we list the 
results obtained when only F -- 10% of the training data  was used at each stage. 
Figure 1 illustrates the typical behavior of the averages of the crossvalidated 
scores as a function of F .  
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Fig .  1. Average crossvalidated 0/1-scores (left) and log-scores (right) in the Iris dataset 
case as a function of the percentage of the training data used. 
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The results show that first of all, although the model family used for the 
experiments was determined by the strong independence assumptions underly- 
ing the structurally simple naive Bayes model, the results are quite competitive 
when compared to the results obtained by using much more elaborate model 
families (see, e.g., the results collected in [23]). Secondly, we can see that when 
full datasets are used, in the 0/1-score sense the difference between the perfor- 
mance of the BIBL classifier and the MLNB classifier is not very large, whereas 
in the log-score sense the BIBL approach produces consistently better results. 
The experiments with restricted training data sets show that the BIBL approach 
is very effective in extracting regularities present in the data, and it clearly out- 
performs the standard single model approach in cases with very small amounts 
of data, both in the 0/1-score and in the log-score sense. This is due to the fact 
that BIBL is much more "conservative" than the single model MLNB. For small 
samples it is well known that the traditional MLNB classifier is too dependent 
on the observed data and does not take into account that future data m ay  turn 
out to be different. A more detailed discussion on this topic can be found in [17, 
18]. 

5 C o n c l u s i o n  

In this paper we proposed a Bayesian framework for defining the instance-based 
learning approach. The framework is based on the observation that moving from 
a model based learning approach, such as decision tree learning, to an instance- 
based learning approach that relies solely on data, is in probabilistic terms equiv- 
alent to averaging over all the (possibly infinitely many) models. We presented 
the formalization of the general framework, and illustrated how the approach 
can be implemented in the special case with a set of strong independence as- 
sumptions. 

Our experiments with public domain classification data sets indicate that 
the Bayesian instance-based approach outperforms the (eager) use of a single 
model from the respective model class, especially in cases where only a small 
amount of training data is available. It turns out that the Bayesian instance- 
based learning prediction is very effective in extracting the regularities present 
in the data sets, and requires sometimes order of magnitude less data than what 
is actually available in the data sets to predict essentially as well as with the full 
data set. 
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