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A b s t r a c t .  In the mid 90's a fundamental new Machine Learning ap- 
proach was developed by V. N. Vapnik: The Support Vector Machine 
(SVM). This new method can be regarded as a very promising approach 
and is getting more and more attention in the fields where neural net- 
works and decision tree methods are applied. Whilst neural networks 
may be considered (correctly or not) to be well understood and are in 
wide use, Support Vector Learning has some rough edges in theoretical 
details and its inherent numerical tasks prevent it from being easily ap- 
plied in practice. This paper picks up a new aspect - the use of fractional 
degrees on polynomial kernels in the SVM - discovered in the course of 
an implementation of the algorithm. Fractional degrees on polynomial 
kernels broaden the capabilities of the SVM and offer the possibility to 
deal with feature spaces of infinite dimension. We introduce a method to 
simplify the quadratic programming problem, as the core of the SVM. 

1 I n t r o d u c t i o n  

Well known representatives of classification and prediction methods  in the field of 
Machine Learning are neural networks and methods for generation different kinds 
of decision trees. An innovative and still relatively unknown learning approach 
is the Support  Vector Machine (SVM) developed by V. N. Vapnik in the mid 
90's. Support  Vector Learning [IRZ98] is not just  another approach to learning 
techniques, rather it can be regarded as a fundamental  new philosophy in the 
area of  Machine Learning. 

The  underlying principle of the SVM is the principle of  the Structural Risk 
Minimization (SRM) [Vap95]. In contrast  to a pure minimizat ion of the empirical  
risk the SRM is based on the "idea of the simplicity" and unifies Empirical Risk 
Minimization and the problem of Model Selection. The searched binary classifier 
for the problem 

( x l , y l ) , . . . , ( x t , y t ) ,  x~ E R n, Yi E { q - l , - 1 }  , 
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has to be a function from the set 

{ f ,  : a  E T'}, f ,  : Rn "-~ { + 1 , - 1 } ,  z~-~y ,  

and should reflect the real inherent essence of the given learning problem. This 
essence can be regarded as the simplest (in some sense) separation of the feature 
space. Here simplicity will be formalized by means of the VC dimension, i. e. a 
measure of the considered set of feasible functions, e. g. the family of separating 
hyperplanes. The SRM is enforced by controlled bounding of the VC dimensions 
of the set {fa} and ensures the excellent generalization ability of the SVM. The 
underlying theory of the SRM will not be explained in detail in this paper. We 
refer to [Vap95] which covers the SRM and the application in the SVM. 

The separating hyperplane is characterized by (w, x) + b = 0. The distance 
between the hyperplane and the examples should be maximized, i. e. one has to 
solve a problem of mathematical programming. For the non-separable case slack 
variables ~ _> 0 are introduced, which leads to: 

~(w,w) + C~,i= 1 ~i -¢ min 

ly i[(w,  xi)+b] > 1 - ~ i  V i=  1 , . . . , l  (1) 

>_ o v i =  1 , . . . , z ,  

where the capacity parameter C > 0 controls the interrelationship between the 
accuracy of the classifier on the learning set and its ability of generalization, i. e. 
the accuracy on an unseen test set. 

The vector w, as the solution of (1), determines the optimal hyperplane. It 
can be expressed as a linear combination of a possibly small subset of the whole 
learning data: 

l 

= oby, x, = ¢2) 
i = 1  S V  

Support Vectors are such vectors xi, which satisfy yi [(w, xi) + b] = 1, i. e. which 
have a nonzero ai  and effectively contribute to the description of the separating 
hyperplane. Hence in (2) one can reduce 0# to a linear combination of support 
vectors. Less formally these support vectors can be viewed as the examples on 
the frontline guarding the own class against the examples of the other one and 
are essential for the concept to be learned. 

Considering (2) one has to solve the following optimization problem: 

AT1 -- 
I O < A <AcT1 AA -+ I a x  

(3) 
'1 d o  

with A = ( a l , . . - , a l ) , l  = (1 , . . . ,  1), and Y = (Yl,.. . ,Yt)- The HESSE matrix 
A consists of the elements A~j = yiyj(z~, zj) for i , j  = 1, . . .  ,l [CV95]. 

However in the general case the linear separation in the original feature space 
will not provide a sufficient classifier. Therefore the original feature space is 
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expanded to a very high dimensional image space by (e.g.): 

: Itn _+ R g , n  << N,~(z)  "-" ( 1 , 7 1 X l ,  . . . . . .  ,"[nXn,"/n+lX2,"Yn+2XlX2, ,"[kXdn), 

and in this space the linear separation is performed. An inverse transformation 
back into I t "  results in a non-linear separation in the original space of the task 
supplied features: 

f ( z )  = (w, q~(x))  -I- b . 

It is not necessary to expand the feature space explicitly. One way to do the 
mapping implicitly is to use kernels K(u, v) (respectively dot products). In this 
context the fundamental interrelation is: 

K(u, v) = (~(u), 4)(v)). 

The symmetric function K(u, v) may be a dot product for the high dimensional 
image space, if the eigenvalues are positive. One rather simple type of such 
kernels is representable as 

g(u ,  v) = ((u, v) + l) a , d = l , 2 , . . .  (4) 

with degree d as an integer. Another choice may be K(u, v) = e-I1-:~11. A gen- 
eralized kind of the kernel (4) will be examined in this paper. 

2 Polynomial Kernels  with Fractional Degree 

Interestingly a fixed chosen kernel K(u, v) induces not only exactly one trans- 
formation but a manifold of such mappings 4. Even the dimensionality of the 
image space R g i s  not determined. From (4) for d = 2 and n -" 2 one gets: 

• (u) = (1, V~Ul, v~u2, u 2, V~UlU2, u2), u = (Ul, u2) 

as well as 

and infinite number of others. 
Therefore a question arises: Choosing a kernel K(u, v) - which is the space 

of smallest dimension for an image of 4?  The answer for d e N is (n+d) (or 

equivalently (n+u)). While selecting an appropriate kernel g via the exponent d, 
there are huge discontinuities in the dimensionalities of the corresponding image 
spaces. The approximation and generalization capacity may be controlled by 
bounding the norm of the separating hyperplane, but another tuning parameter 
will still be there: the dimensionality (cf. Table 1). 

Using a fractional exponent in the kernel (4) we encounter an interesting 
property: the dot product (u, v) may be less than - 1  and we have a negative 
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I" \ all 11 21 31 al 51 6 7 
2 2 6 10 15 21 28 36 

16 16 1531 9 6 9 4 . 8 x l 0  s 2 .0×104 7.5×104 2 .5×105 
256 256 3.3 × 1042.9 × 106 1.9 x 10 s 9.7 × 109 4,2 x 1011 1.6 × 10 la 

Table 1. Dimension of image space for polynomial kernel with exponent d and n origi- 
nal features. The dimension of the image space (where the linear separation takes place) 
grows quite rapidly - an explicit computation in this space would be impossible. But as 
mentioned before, this is fortunately not required. Rather the value itself should guide 
the user to a conjecture about the separating abilities of the associated hyperplane. 

base to raise, t Hence the HEssE Matrix A will not be real valued and therefore 
symmetric (A T = A) anymore, but in fact contain complex entries. Nevertheless, 
A has the property of hermiticity (A T = A). This allows for a new formulation 
of (3). Because 

AT AA = AT AT A = AT 1 1 ~ ( A + A T )  A = A  T ( A + A - - ) A = A T R e ( A ) A  

we equivalently solve 

I AT1 -- 1ATRe (A) A -+ max 

~iO < A < C1 (5) 
( A T'Y ---0 

instead, and get rid of the complex entries. (Re(A) denotes the real part.) 
Exposing the kernel for arbitrary exponents d we get according to TAYLOR: 

((u, v) + 1) d = 1 + d(u, v) + d (d2!- 1__.~) <u, v) 2 + d (d - 1)3! (d - 2) (u, v) 3 

-t d (d - 1) (d4I- 2) (d - 3) (?2, ~))4 + . . .  

Non-integer exponents do not terminate the series like the integer ones, but the 
influence of high-order terms decreases nevertheless. In contrast to kernels with 
an integer exponent there are no mappings • corresponding to such a fractional 
exponent kernel which have an image space of finite dimension. 

Fractional degrees allow a more continuous range of concepts. The resulting 
separating hyperplanes smoothly change the shapes with the exponent d. This 
will be of importance especially for domains dealing with feature spaces which 
already cover tens, hundreds or more dimensions (e.g. recognition of graphical 
images), where a lower degree of a polynomial kernel is preferred. A simple 
artificial problem in a two dimensional feature space is presented in Figure 1. 
[Fri93] 

1 One could imagine this in the original space: The representing vectors u and v of 
both participating examples form a sufficient obtuse angle. 
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Fig. 1. Continuous variation of exponent d. 226 examples, class distribution 93/133, 
90 % used to generate the separation. Two properties of the problem are significant: low 
dimensionality of the original feature space, difficultly crossed arrangement of examples 
in the lower right area. As expected, a somewhat higher exponent of the polynomial 
kernel is necessary for the approximation of the concept. 

3 The "1/2 Trick" 

Realizing the SVM as a whole, the solution of the quadratic optimization prob- 
lem (quadratic programming, QP) - actually a series of such, with different 
parameters - constitutes the real amount of work. Generally the QP task is for 
the most part determined by the calculation of function values, gradients (or 
its estimations). It makes more difficulties here because of the (potential) large 
HESSE matrix and its nonsparsity. 

1 We tackle this by choosing a kernel of the type ((u, v) + 1) 6 with d = m + 
and m E N.  The corresponding entry in the resulting HESSE matrix (Re(A) in 
(5)) will vanish for negative ((u, v) + 1). 

The SVM algorithm selects a separating hyperplane according to a criterion 
of sufficient values on the training examples as well as the minimization of the 
norm of the hyperplane. Unfortunately, • is nonlinear - the resulting shape of the 
function and thus the border between the predicted areas of both classes varies 
with uniform translations of the examples in the feature space. For instance 
the resulting separation lines for different centered sets of the well known XOR 
problem are depicted in Figure 2. A second degree kernel is used. 

Despite of the non-invariance against the uniform translation of the examples 
in the feature space, one could center the set into the origin of the co-ordinate 
system to obtain a sufficient obtuse angle between a large number of pairs of 
examples. This will result in a sparser HESSE matrix for the QP task. Up to 
50 % of the entries may be zeroed by means of this smart approach. 
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/x + }, y + })  are members of one class, while the two other examples (x - 6' Y + 
Ix + ~, y - ~) belong to a second class. The four points are centered on (x, y). 

4 S u m m a r y  

The Support Vector algorithm shows some promising properties but needs some 
refinement especially on the level of  practical realization to soften the enormous  
effort to  find the "simplest" explanation for a learning problem. Polynomial  
kernels with fractional degrees provide a broader range of  concepts as well as a 
way to  reduce the numerical effort to be spent in the QP. 

The  algorithm works well with a feature space of  "similar" features. Is is 
often preferred to  do a componentwise  transformation to normalize the data in 
front of  the number crunching task of  the SVM itself. For specific domains  this 
could be done in the kernel function. 
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