
Error-Correcting Output Codes
for Local Learners

Francesco Ricci 1 and David W. Aha 2

1 Istituto per la Ricerca Scientifica e Tecnologica
38050 Povo (TN), Italy

2 Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory, Code 5510

Washington, DC 20375 USA

Abs t r ac t . Error-correcting output codes (ECOCs) represent classes with
a set of output bits, where each bit encodes a binary classification task
corresponding to a unique partition of the classes. Algorithms that use
ECOCs learn the function corresponding to each bit, and combine them
to generate class predictions. ECOCs can reduce both variance and bias
errors for multiclass classification tasks when the errors made at the out-
put bits are not correlated. They work well with algorithms that eagerly
induce global classifiers (e.g., C4.5) but do not assist simple local clas-
sifters (e.g., nearest neighbor), which yield correlated predictions across
the output bits. We show that the output bit predictions of local learn-
ers can be decorrelated by selecting different features for each bit. We
present promising empirical results for this combination of ECOCs, near-
est neighbor, and feature selection.

1 I n t r o d u c t i o n

Error-correcting output codes (ECOCs) can help distinguish classes in classifi-
cation tasks with m > 2 classes by encoding error-correcting capabilities in their
output representation. This can increase the classification accuracy of global
learning algorithms [Dietterich and Bakiri, 1995] (e.g., C4.5 [Quinlan, 1993],
backpropagat ion [Rumelhart et al., 1986]).

However, ECOCs do not benefit local learning algorithms [Kong and Diet-
terich, 1995; Bottou and Vapnik, 1992], which predict classifications for a query q
based only on information from examples local (i.e., nearby) to q. In Section 1.2,
we explain that this l imitation occurs because a local learner's predictions are
correlated across the output bits.

This paper presents a method that allows ECOCs to work well with local
learning algorithms; it uses a feature selection algorithm to reduce the correlation
of a local learner's decision boundaries across output bits.

1.1 E r r o r - c o r r e c t i n g output codes

Table 1 exemplifies how ECOC encodings differ from two popular output en-
coding strategies. In each of these output representations, each class ci E C is

281

Table 1. Example Output Representations

Class Output Representation
Name Atomic Distributed

One-Per-Class ECOC

Earthling 1 100 00000
Martian 2 010 11100
Italian 3 001 00111

assigned a unique codeword si = (s i l , . . . , sit) of l codeletters (e.g., [Dietterich
and Bakiri, 1995]).

The most popular atomic strategy sets l = 1; it uses a single codeletter to
represent class labels. Learning algorithms that use this approach (e.g., C4.5
[Quinlan, 19931) induce a single concept description that distinguishes all class
boundaries.

Conversely, distributed output code strategies set l > 1, where each codelet-
ter sij typically has a binary value (i.e., they are bit strings). This strategy
defines l binary functions f j on the training set, where f j (x) = 1 if x is in class
c~ and sij = 1, and f j (x) = 0 otherwise, f j is also called the j - th output bit func-
tion; it is defined only by the j - th column of sij and provides a binary parti t ion
of the classes. For a given class ci and output bit f j , either fj maps all examples
in ci to 1 or maps all of them to 0. Each output bit function corresponds to a
different learning task. Given a query q, classifiers using distributed output rep-
resentations generate predictions]/(q) (l<_j<_l) for each output bit, and predict
the class ci whose codeword (s i l , . . . , sit) has minimal (e.g., Hamming) distance
from the predicted codeword (• (q) , . . . ,]z (q)).

Two types of distributed output representations are one-per-class and error-
correcting. In one-per-class each bit function separates the examples in one class
from the remaining examples (i.e., exactly one output bit in a one-per-class
codeword has value 1; all others have value 0). Learning algorithms that use
one-per-class encodings induce a separate concept description per class [Quinlan,
1993; Aha, 1992], where positive instances of a class ci are negative instances for
all other classes cj (i#j) .

The Hamming distance between all one-per-class codewords is 2, which means
that even one incorrectly predicted output bit can cause a misclassification. In
contrast, ECOCs encode error-correcting capabilities: they are not restricted
to having exactly as many classes as output bits, their codewords can have
multiple output bits with value 1, and each class's codeword differs, in Hamming
distance, from all other class codewords by (at least) a pre-determined amount
h. This gives ECOCs an error-correcting capability of [~ A] . For example, h = 3
for the three ECOC codewords shown in Table 1. Thus, even if one bit 's value
is incorrectly predicted for a query q the correct class still has the minimum
Hamming distance to q, and will thus be predicted.

282

Dietterich and Bakiri [t995] compared these three output representations
on several multiclass tasks. They designed ECOC codewords, which typically
require a large number of output bits, to maximize both row separation of the
matrix sij (i.e., Hamming distance between codewords) and column separation
(i.e., Hamming distance between two columns of sij, and between any one column
and the complement of another). This ensures that the errors of the output
bit predictions are uncorrelated. They reported that ECOCs often significantly
increased the classification accuracies for C4.5 [Quinlan, 1993] and networks
trained by backpropagation [Rumelhart et al., 1986], although training ECOCs
is slow because they must learn 1 concepts (i.e., one per output bit).

Kong and Dietterich [1995] showed that ECOCs work well with global learn-
ing algorithms on multiclass classification tasks because they can reduce both
the variance and bias components of the output bit errors. Variance results from
random variation and noise in the training set and from any random behaviors of
the learning algorithm itself. ECOCs reduce variance through a voting process
[Perrone and Cooper, 1993]: because Hamming distance determines the "win-
ning" prediction (i.e., closest codeword), each output bit prediction corresponds
to a vote for classes whose codewords match the predicted value.

Bias instead refers to an algorithm's systematic errors. These can also be
reduced by voting, but only when the individual predictions are uncorrelated,
such as by averaging the contributions of different prediction algorithms (e.g.,
[Zhang et al., 1992]). Alternatively, the same algorithm can be used multiple
times, but it must vote on different subproblems (i.e., using different class de-
cision boundaries) that cause the algorithm to generate different bias errors.
When output bits have good column separation, global algorithms like C4.5 can
induce different class boundary hypotheses for different output bits.

1.2 P r o b l e m and p r o p o s e d so lu t ion

Suppose that a query q is in class i but a classifier CL (without using ECOCs)
misclassifies it as k. Suppose also that CL~co~ uses error-correcting output codes.
Assume further that sij and Ski (j = 1 , . . . , l) are the two encodings of classes i
and k, respectively. CLeco~ can "correct" CL prediction errors for q if and only
if it assigns to q the codeword (]t (q) , . . . , i t(q)) and there are more j such that
]j(q) = s,j than]j(q) -" Skj (i.e., for any class k in l<k<m).

When CL is a local classifier (e.g., nearest neighbor) q's predicted bit value
]j (q) will always be the same as the bit value of its nearest neighbor q~. Therefore
if the nearest neighbor misclassifies q then its ECOC variant will also misclassify
q. Thus extending nearest neighbor with ECOCs will not modify its class pre-
dictions. More generally, this holds for other distributed output representations,
including one-per-class. Kong and Dietterich have shown that a global classifier
(e.g., C4.5) can avoid this problem. That is, C4.heco~ can predict/ j(q) = sij for
some j and]j(q) -" ski for some other j.

Figure 1 exemplifies how ECOCs assist global but not local classifiers. It
shows two output bit partitions for three classes ci (1_<i_<3) in a two-dimensional

283

Fig. 1. Class Boundaries (solid lines), Class Groupings (shadings), and a Global Learn-
er's Partition Boundary Hypotheses (dashed lines) for Two Output Bits

continuous space, where each class has a single training instance xi. The solid
lines define the class boundaries, the shadings define each bit's class partition, 3
and the dotted lines show the partition boundary hypotheses that might be
induced by a global learner, where the predicted class of each rectangle is the
class of its enclosed instances. Thus, the first hypothesis is wrong on q while
the second is correct. Therefore, the second bit function can help correct the
first error, where the underlying assumption is that the majority of hypotheses
(bit functions) will correctly predict a query's partition. In contrast, nearest
neighbor, when making each bit function hypothesis, will always identify x3 as
q's closest neighbor, and predict xa's partition.

In this paper, we present empirical evidence that ECOCs can substantially
improve the accuracies of the nearest neighbor classifier by incorporating an
appropriate feature selection algorithm. Bit-specific decision boundaries can be
obtained for nearest neighbor by applying feature selection independently for
each bit, which yields a different distance function for each bit. This in turn
allows a different nearest neighbor to be selected for each bit's prediction, which
decorrelates the output bit errors. The bias/variance decomposition of the error
(Section 4) reveals that this accuracy improvement is obtained by drastically
reducing bias at the cost of moderately increasing variance.

2 Local Learning with ECOCs

To work well, ECOCs require that the errors for each of the output bits be
Uncorrelated. Therefore, we extended IB1 [Aha et al., 1991], an implementation
of nearest neighbor, to use different features when computing distances for each
output bit. Figure 2 summarizes the training algorithm scheme for this extension,
named IBlcdwd. Using different codeword generation procedures (e.g., atomic,
one-per-class, or eeoc), IBlcdwd yields different classifiers. Section 2.1 defines its
algorithms for creating ECOC codewords and Section 2.2 describes how it selects
features.

3 The grey area denotes the set of examples that the output bit function maps to 1.

284

IBlc~d(X, C, t, n)

X: Training set
C: Set of classes
l: Number of bit functions (i.e., codeword length)
n: Max iterations allowed in schemata search
S: Codewords (fj is the j-th output bit function from S)
F: Feature subsets (one subset per output bit)

1. S := create_codewords(C,l)
2. FOR j = l to I DO:
3. F~ := race-schemata(X, fj, n)
4. RETURN {S, F}

Fig. 2. IBlcd,,~: An Abstraction of IB1 for Alternative Output Representations

2.1 Generating ECOC codewords

The first step in IBlcdwd inputs C, the set of classes, and l, the number of output
bits per codeword. The function create_codewords generates the set of codewords
S, one for each of the m classes ci E C. We describe in the following how to
generate ECOC codewords. Atomic and one-per-class codewords are generated
as explained in Section I . i .

Algorithms for generating ECOC codewords should maximize both row and
column separation. For classification tasks where m<7, create_codewords uses the
exhaustive codes technique [Dietterich and Bakiri, 1995]. It creates all 2 m-1 -
1 possible codewords that are both column and row separated. The resulting
codewords have Hamming distance h = 2 m-2.

When m > 7, create_codewords employs a variant of Dietterich and Bakiri's
[1995] randomized hill climbing algorithm. Our variant extends the original al-
gorithm to search more efficiently: it searches in directions that either increase
row or column separation, or assist in escaping from local maxima. It initially
generates m boolean codewords of length l, drawn randomly according to a
uniform distribution. It then iteratively modifies these codewords, yielding the
set of codewords with maximal row and column separation. During each itera-
tion, it selects the two most similar codewords (rows) and the two bit partitions
(columns) that are most similar or most dissimilar. However, the columns are
selected only if the intersection of these rows and columns (a 2 × 2 boolean matr ix
aij) has either of the following properties:

1. If the columns have small Hamming distance, then either the two rows or the
two columns ofa i j must be equal (i.e., a l t = a12 and a21 = a22 or a l l = a2t
and a12 = az2).

2. If the columns have large Hamming distance, then the two columns of aij
must differ (i.e., a l l ¢ ai2 and a~l ~£ a22).

Some of these four values (aij) are then changed as follows. If M1 four are equal,
then the values on one of the two diagonals are inverted, which increases the

285

race-schemata(X, fj , n):

f3: An output bit function
M: Error statistics matrix (l x 2)
p: Schemata bit string of length d (initially all *'s)
q: Schemata bit string of length d (instantiates p)
e: Prediction error (boolean)

1. FOR i ~-- I TO I DO:
2. M := initialize(p)
3. DO (k ~- 1 TO n):
4. x := random-select(X)
5. q := select-constrained-string(p)
6. e := compute-error(IBl,x, f:, q)
7. M := update-matching-statistics(M, q, e)
8. UNTIL winner(M) or (k = n)
9. p := update-winning-feature(p, M)
10. RETURN features selected in p

Fig. 3. The Race-Schemata Algorithm for Feature Selection (see Figure 2 for additional
documentation)

separation of these rows and columns by two. Otherwise, one of these four values,
randomly selected, is inverted. This does not always increase total separation,
but it helps to escape from local m a x i m u m by exchanging row with column
separation (or vice versa). The search process is stopped after a pre-determined
m a x i m u m number of codeword changes has occurred.

2.2 S e l e c t i n g f e a t u r e s

After creating the codewords, IBlcdw8 calls ra ce - s chema ta (Figure 3), which in-
puts the training set X, a bit function f j , and the max iteration number n. It
returns the subset of features selected by a variant of the schemata racing al-
gori thm [Maron and Moore, 1997] (see [Ricci and Aha, 19975]). R a c e - s c h e m a t a
searches over the space of schemata strings p E P of length d, the number of
features, whose characters are O's (feature is not selected), l ' s (selected), or , ' s
(selected with probabili ty 50%). Step 2 begins one race for each (remaining)
* in the schemata p, resetting each feature 's error statistics for both 0 and 1.
For instance, the first t ime d races start , and in each race schemata of type
"* . • .* 0 , . . . * " compete against %. - - , 1 , - • . , " , with 0 and 1 in the same posi-
tion. The interior loop (steps 3-8) iterates until the next race winner is found or
n iterations are reached. Each iteration randomly selects a training instance x,
selects a binary string q (without , ' s) that matches the O's and l ' s currently in p
(i.e., it matches at least one of the schemata being raced), computes IB l ' s error
on x for bit function f j using the features selected in q, and updates the error
statistics for all the schemata being raced that match q. The error of a schemata

286

is computed by averaging the error of matching samples. If a "winning" fea-
ture is found (i.e. it is highly unlikely that the error of the other schemata is
significantly less) then the interior loop terminates and p is updated by fixing
the winner's bit value, changing it from ~ to either 0 or 1 (see [Ricci and Aha,
1997b] for more details). Race-schemata returns the features whose values in p
are 1 (i.e., a selected subset of features).

3 E v a l u a t i o n

We empirically evaluated our hypothesis that ECOCs can increase IBl ' s ac-
curacies, when coupled with a feature selection algorithm, in situations where
feature selection yields different features for each output bit. Thus, we focused
on two independent variables in our experiments: the output representation for
IB1 and whether it employed feature selection.

We compared three instances of IBlcdwd using the three output encodings
described in Section 1.1. Their names are IBlatomic, IBlopc, and IBle¢oc for the
atomic, one-per-class, and ECOC output representations, respectively. Figure 2
applies to all three algorithms except that create_codewords does not modify the
single-codeletter codewords for IBlatomic and generates only simple one-per-class
codewords for IBlopc (e.g., 10. . .0, 01 . . . 0 , . . . , 00. . . 1). However, as explained
in Section 1.2, distributed output representations will not modify IBl ' s clas-
sification behavior when feature selection is not performed. Thus, rather than
reporting results for all six combinations of independent values (i.e., three output
representations, either with or without feature selection), we report the results
for only four of these combinations: the atomic output representation without
feature selection plus all three output representations when using feature selec-
tion.

3.1 D a t a Sets

We selected seven data sets (Table 2) from the UCI Repository [Merz and Mur-
phy, 1996] that have only numeric or boolean features, no missing values, and at
least four classes. Even if ECOCs are applicable to general data sets, we avoided
those with symbolic features because they often require distinct weighting met-
rics (e.g., [Stanfill and Waltz, 1986]), which complicates isolating the effects of
feature selection. Data sets with fewer than four classes do not greatly benefit
from ECOCs. We also used three additional proprietary data sets concerning
cloud classification. We will use abbreviations for the data set names.

We conducted a ten-fold cross validation on the data sets with the following
exceptions: we used only the usual single training and test set for IS due to its
large size, we used only five folds for VO due to its structure, and we inverted
the training and test sets for SE due to its ease.

287

Table 2. Selected Data Sets (C=Classes, d=dimensionality)

Glass Clouds98 Clouds99 Clouds204 Isolet Letter Satellite Vowel Segmentation Zoo
Code GL CL98 CL99 CL204 IS LE SA VO SE ZO

Size 214 69 321 500 7797 20000 6435 990 2310 101
ICI 6 4 7 10 26 26 6 11 7 7

d 9 98 99 204 617 16 4 10 19 16

Tab le 3. Average Percent Accuracies and Standard Deviations

Data Set Feature Selection

GL
CL98
CL99
CL204
IS
LE
SA
VO
SE
ZO

No Feature Selection With
IB latomic I B 1 ~tomic
68.3=h11,9
64.0±15.1
53.9=t=9.3
60.6=t=7.9
84.6
83.4=t=2.3
80.7±1.3
57.74-8.0
96.8± 1.1
94.5=t=6.4

IIBlopc IIBle¢o¢

69.1-t-11.5 67.2±8.3 73.8-t-7.8
65,7i18.1 65.5±13.4
58.5±9.3 4 8 . 6 ± 8 . 3
57.8±6.7 $6.0±5.1
84.0 24.4
83.5±2.2 83.5±2.1
80.5±2.7 79. 7±1.7
57.7:1:8.0 57.7±8.0
96,8:1:1.1 96.8±1.1
92.7±8.4 94.5±6.4

65.5±11.6
59.8±8.4
73.8i4.6
90.4
84,9±3.2
82.2±1.6
57.8±8.1
96.9±1.1
94.5±6.4

b o l d f a c e : s ig l l i f icant ly lower l - t a i l e d t - t e s t accurac iea t h a n 1 B l e c o c (p < 0 .05)

~tahca: slgnific&ntly lower 1- ta i led t - t e s t a<cur~cies t h a n I B l a l o m ~ c wi th no f ea tu r e se lec t ion (p < 0 .05)

3.2 E m p i r i c a l c o m p a r i s o n

Table 3 summarizes the results of our experiment . Our p r imary finding is tha t ,
when feature selection is usefld and when different features are selected for dif-
ferent bit functions, ECOCs can significantly improve the accuracy of the local
learner IB1.

Feature selection was not always appropriate; it increased accuracy on only
four da t a sets, and never significantly increased accuracy. IB 1 ¢coc performed well,
"repairing" IBl~to,~ic's accuracy whenever it was reduced by feature selection.
I B l~coc'S accuracies were always significantly higher or not significantly different
than the other a lgor i thms ' accuracies.

We hypothesized tha t E C O C representat ions increase accuracy for high-
dimensional da t a sets where different feature subsets are useful for learning dif-
ferent ou tpu t bits (CL98, CL99, CL204, IS, SA). Thus, we examined whether the
modified racing schemata a lgor i thm selected different features for different bit
functions. We define Selected as the average number of features selected per out -
put bit function, and ComlnPairs as the average number of features in c o m m o n
selected for a given pair of bit functions. The rat io of Selected to ComInPairs
is a rough measure of the variabili ty of the features selected a m o n g different bit
functions.

288

% IB1 Increase vs. IBlatomic acoc

tO

O w I !

2 4 6 B 10
Average # of Selected Features/Ave # Common Between Bite

Fig. 4. Correlation Between Variances in the Feature Selection Per Bit and Average
ECOC Accuracy Increases Versus IBlato,~¢ Without Feature Selection

Figure 4 plots, for each data set, the ratio of Selected to ComInPairs against
the percentage accuracy improvement obtained by IBle~o¢ when compared with
IBlatornic (without feature selection). The correlation of these variables is fairly
high (0.87), suggesting a linear relationship: ECOC accuracy gains tend to in-
crease with increasing diversity among the features selected per output bit. The
line in Figure 4 is the linear regression equation computed from these values.

4 B i a s , V a r i a n c e , a n d E r r o r D e c o m p o s i t i o n

This section first reviews Breiman's [1996] definitions for bias and variance (i.e.,
for classification tasks) and then presents the error decomposition for some of
the data sets.

A classification problem is completely described by k real deterministic func-
tions P (Y = i lX = x), where X describes the input parameters and Y the
output classes. The minimum misclassification rate is obtained using the Bayes
optimal classifier:

YB(X) = arg m.axP(Y = ilX = x) (1)
$

Given a finite training set T = {(xi, Yi) : i = 1, . . . , m} the classifier induced by
a supervised learner depends on T, which we denote as Y (x l T). The aggregate
classifier YA (z) can be defined as:

YA (x) -" arg max P (Y (x IT) = i) (2)
t

The predictions of the Bayes optimal classifier and aggregate classifier differ
when P(~ ' (x lT) = i) ~= P (Y = iIX = x). Sreiman defines a classifier to be
unbiased at a if YA(X) = YB(X). Let U be the set of instances at which 1? is
unbiased and B its complement. The bias, variance, and error decomposition are
defined as follows:

Bias(} ') = P(Y(¢) • Y (x) , x e B) - P (Ys (x) # Y (x) , x • B) (3)

V a t (Y) = P(~'(¢) # Y(¢) , x e U) - P(YB(¢) ~£ Y(x) , x • lt) (4)

289

Table 4. Bias and Variance Decomposition of tile Error for Archived Data

algo Glass
IB1 0.3181
Bias 0.302
Variance 0.016
IBlatomic 0.287
Bias 0.178i
Variance 0.109
IBlovc 0.313
Bias 0.232
Variance 0.080
IBlecoc 0.234
Bias 0.177
Variance 0.057

Clouds98 Clouds99 Clouds204
0.390 0.432 0.385
0.374 0.408 0.371
0.016 0.024 0.013
0.349 0.422 0.392
0.286 0.335 0.297
0.063 0.087 0.096
0.403 0.481 0.566
0.347 0.390 0.418
0.056 0.091 0.148
0.364 0.374 0.268
0.294 0.333 0.209
0.070 0.041 0.058

Zoo
0.034
0.027
0.007
0.038
0.031
0.007
0.047
0.039
0.008
0.028
0.022
0.006

Er(Y) = Er(YB) + Bias(} p) + Vat(Y) (5)

To estimate bias and variance, we randomly split the data into t00 partitions,
with 90% of the data used for training and 10% for testing. We used the relative
frequency that each instance x was classified as i to estimate P(Y(xlT) = i).
The bias set B and its complement U can be obtained based on these estimates.
Given that each instance is unique in each of our data sets, we assumed, as did
Kohavi and Wolpert [1996], that the Bayes optimal error rate is zero for each
data set tested (see also [Ricci and Aha, 1997a]). The results of the experiments
conducted on some of the data sets are shown in Table 4.

From these results we conclude that ECOCs drastically reduce the bias com-
ponent of the error at the cost of moderately increasing the variance. Bias is
always reduced, from a minimum of 18% (Clouds99) to a maximum of 44%
(Clouds204). Conversely the decrease in the total error obtained by IBl~coc is
moderated by an increase in variance (i.e., 1Bl~co~'S variance was at least twice
IBlatomic'S variance for each data set).

5 D i s c u s s i o n

In addition to the research reported by Dietterich and his colleagues, this re-
search was inspired by Aha and Bankert [1997], who reported promising ECOC
results for one data set using a k-nearest neighbor variant coupled with a forward
sequential feature selection algorithm. This paper extends their work, exploring
whether feature selection can decorrelate output bit errors sufficiently for near-
est neighbor to work well with ECOCs. We found similar behavior with k > 1
in other experiments (not reported here).

Previous research on ECOCs did not stress feature selection, which is crucial
for some tasks. Due to their low training costs, nearest neighbor classifiers are

290

excellent for use with expensive feature selection approaches [Aha and Bankert,
1997]. Perhaps the most effective feature selectors are those that guide search
using feedback from the classifier itself. This is expensive because it requires
evaluating the classifier on many feature subsets, which is a good motivation for
using an inexpensive classifier such as nearest neighbor. Thus, our contributions
are useful for multiclass classification tasks where (1) feature selection is needed
and (2) obtaining high predictive accuracy is a priority.

Although they can increase accuracy on some tasks, ECOCs have limita-
tions. For example, the arbitrarily-generated class partitions corresponding to
each output bit have no meaningful interpretation. Additional research could
explore whether ECOCs can work well with meaningful (e.g., pre-determined)
class partitions. Also, training ECOCs is slow because they must induce one clas-
sifter per output bit, and they typically require using many more output bits than
classes to perform well. Feature selection compounds this problem, which is why
we selected a fast feature selector. However, because feature selection algorithms
that incorporate classifier feedback are computationally expensive, alternative
methods should be considered when speed is important. Finally, IBl~coc tended
to work best with larger training sets, higher dimensional spaces, and when
feature selection is appropriate.

6 S u m m a r y a n d F u t u r e W o r k

We investigated the hypothesis that ECOCs can increase the classification ac-
curacies of local learning algorithms (e.g., nearest neighbor) when used in con-
junction with a feature selection algorithm. If feature selection yields different
features for each output bit, then their errors will be decorrelated because dif-
ferent class partition hypotheses will be generated for each output bit. This is
the same reason why global algorithms increase accuracy when integrated with
ECOCs.

Our empirical results provide evidence for our hypothesis. We also hypothe-
sized conditions under which this combination of algorithms will perform well,
and presented evidence suggesting that it works well for tasks that require fea-
ture selection and where different features are selected for each output bit. In
some cases, the accuracy improvements were dramatic.

Future research topics include using different distance metrics for different
bit functions, using alternative feature selection algorithms, and investigating
whether similar benefits can be obtained using feature weighting rather than
feature selection algorithms.

Acknowledgemen t s

This work was supported by IRST and the Office of Naval Research. Thanks
to Diana Gordon and Ken De Jong for their feedback on earlier versions of this
paper, and to Paul Tag and Rich Bankert for the cloud data sets.

291

R e f e r e n c e s

[Aha and Bankert, 1997] D. W. Aha and R. L. Bankert. Cloud classification using
error-correcting output codes. Artificial Intelligence Applications: Natural Science,
Agriculture, and Environmental Science, 11:13-28, 1997.

[Aha et al., 1991] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning
algorithms. Machine Learning, 6:37-66, 1991.

[Aha, 1992] D. W. Aha. Tolerating noisy, irrelevant, and novel attributes in instance-
based learning algorithms. International Journal of Man-Machine Studies, 36:267-
287, 1992.

[Bottou and Vapnik, 1992] L. Bottou and V. Vapnik. Local learning algorithms. Neu-
ral Computation, 4:888-900, 1992.

[Breiman, 1996] L. Breiman. Bias, variance, and arcing classifiers. Technical Report
460, University of California, Berkeley, April 1996.

[Dietterich and Bakiri, 1995] T. G. Dietterich and G. Bakiri. Solving multiclass learn-
ing problems via error-correcting output codes. Journal of Artificial Intelligence
Research, 2:263-286, 1995.

[Kohavi and Wolpert, 1996] R. Kohavi and D. H. Wolpert. Bias plus variance decom-
position for zero-one loss function. In Proceeding of the Thirteenth International
Conference on Machine Learning, pages 275-283, Bari, Italy, 1996. Morgan Kauf-
mann.

[Kong and Dietterich, 1995] E. B. Kong and T. G Dietterich. Error-correcting out-
put coding corrects bias and variance. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 313-321, Tahoe City, CA, 1995. Morgan
Kaufmann.

[Maron and Moore, 1997] O. Maron and A. W. Moore. The racing algorithm: Model
selection for lazy learners. Artificial Intelligence Review, pages 193-225, 1997.

[Merz and Murphy, 1996] C. Merz and P. M. Murphy. UCI repository of machine
learning databases. [http://www.ics.uci.edu/~mlearn/MLRepository.html], 1996.

[Perrone and Cooper, 1993] M. P. Perrone and L. N. Cooper. When networks dis-
agree: Ensemble methods for hybrid neural networks. In R. J. Mammone, editor,
Neural Networks for Speech and Iraage Processing. Chapman and Hall, Philadelphia,
PA, 1993.

[Quinlan, 1993] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, San Mateo, CA, 1993.

[Ricci and Aha, 1997a] F. Ricei and D. W. Aha. Bias, variance, and error correcting
output codes for local learners. Technical Report 9711-10, IRST, 1997.

[Ricci and Aha, 1997b] F. Ricci and D. W. Aha. Extending local learners with error-
correcting output codes. Technical Report 9701-08, IRST, 1997.

[Rumelhart et al., 1986] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
internal representations by error propagation. In D. E. Rumelhart and J. L. McClel-
land, editors, Parallel Distributed Processing: Explorations in the Microstructures of
Cognition. MIT Press, Cambridge, MA, 1986.

[Stanfill and Waltz, 1986] C. Stanfill and D. Waltz. Toward memory-based reasoning.
Communication of A CM, 29:1213-1229, 1986.

[Zhang et al., 1992] X. Zhang, J. Mesirov, and D. Waltz. Hybrid system for protein
structure prediction. Journal of Molecular Biology, 225:1049-t063, 1992.

