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Abs t r ac t .  Error-correcting output codes (ECOCs) represent classes with 
a set of output bits, where each bit encodes a binary classification task 
corresponding to a unique partition of the classes. Algorithms that use 
ECOCs learn the function corresponding to each bit, and combine them 
to generate class predictions. ECOCs can reduce both variance and bias 
errors for multiclass classification tasks when the errors made at the out- 
put bits are not correlated. They work well with algorithms that eagerly 
induce global classifiers (e.g., C4.5) but do not assist simple local clas- 
sifters (e.g., nearest neighbor), which yield correlated predictions across 
the output bits. We show that the output bit predictions of local learn- 
ers can be decorrelated by selecting different features for each bit. We 
present promising empirical results for this combination of ECOCs, near- 
est neighbor, and feature selection. 

1 I n t r o d u c t i o n  

Error-correcting output  codes (ECOCs) can help distinguish classes in classifi- 
cation tasks with m > 2 classes by encoding error-correcting capabilities in their 
output  representation. This can increase the classification accuracy of global 
learning algorithms [Dietterich and Bakiri, 1995] (e.g., C4.5 [Quinlan, 1993], 
backpropagat ion [Rumelhart  et al., 1986]). 

However, ECOCs do not benefit local learning algorithms [Kong and Diet- 
terich, 1995; Bottou and Vapnik, 1992], which predict classifications for a query q 
based only on information from examples local (i.e., nearby) to q. In Section 1.2, 
we explain that  this l imitation occurs because a local learner's predictions are 
correlated across the output  bits. 

This paper  presents a method that  allows ECOCs to work well with local 
learning algorithms; it uses a feature selection algorithm to reduce the correlation 
of a local learner's decision boundaries across output  bits. 

1.1 E r r o r - c o r r e c t i n g  output codes 

Table 1 exemplifies how ECOC encodings differ from two popular output  en- 
coding strategies. In each of these output  representations, each class ci E C is 
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Table 1. Example Output Representations 

Class Output Representation 
Name Atomic Distributed 

One-Per-Class ECOC 

Earthling 1 100 00000 
Martian 2 010 11100 
Italian 3 001 00111 

assigned a unique codeword si = ( s i l , . . . ,  sit) of l codeletters (e.g., [Dietterich 
and Bakiri, 1995]). 

The most popular atomic strategy sets l = 1; it uses a single codeletter to 
represent class labels. Learning algorithms that  use this approach (e.g., C4.5 
[Quinlan, 19931) induce a single concept description that distinguishes all class 
boundaries. 

Conversely, distributed output  code strategies set l > 1, where each codelet- 
ter sij typically has a binary value (i.e., they are bit strings). This strategy 
defines l binary functions f j  on the training set, where f j  (x) = 1 if x is in class 
c~ and sij = 1, and f j  (x) = 0 otherwise, f j  is also called the j - th  output bit func- 
tion; it is defined only by the j - th  column of sij and provides a binary parti t ion 
of the classes. For a given class ci and output  bit f j ,  either fj  maps all examples 
in ci to 1 or maps all of them to 0. Each output  bit function corresponds to a 
different learning task. Given a query q, classifiers using distributed output  rep- 
resentations generate predictions ]/(q) (l<_j<_l) for each output  bit, and predict 
the class ci whose codeword ( s i l , . . . ,  sit) has minimal (e.g., Hamming) distance 
from the predicted codeword (• (q ) , . . . ,  ]z (q)). 

Two types of distributed output  representations are one-per-class and error- 
correcting. In one-per-class each bit function separates the examples in one class 
from the remaining examples (i.e., exactly one output  bit in a one-per-class 
codeword has value 1; all others have value 0). Learning algorithms that  use 
one-per-class encodings induce a separate concept description per class [Quinlan, 
1993; Aha, 1992], where positive instances of a class ci are negative instances for 
all other classes cj ( i#j) .  

The Hamming distance between all one-per-class codewords is 2, which means 
that  even one incorrectly predicted output  bit can cause a misclassification. In 
contrast, ECOCs encode error-correcting capabilities: they are not restricted 
to having exactly as many classes as output  bits, their codewords can have 
multiple output  bits with value 1, and each class's codeword differs, in Hamming 
distance, from all other class codewords by (at least) a pre-determined amount  
h. This gives ECOCs an error-correcting capability of [ ~ A ] .  For example, h = 3 
for the three ECOC codewords shown in Table 1. Thus, even if one bit 's value 
is incorrectly predicted for a query q the correct class still has the minimum 
Hamming distance to q, and will thus be predicted. 
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Dietterich and Bakiri [t995] compared these three output representations 
on several multiclass tasks. They designed ECOC codewords, which typically 
require a large number of output bits, to maximize both row separation of the 
matrix sij (i.e., Hamming distance between codewords) and column separation 
(i.e., Hamming distance between two columns of sij,  and between any one column 
and the complement of another). This ensures that the errors of the output 
bit predictions are uncorrelated. They reported that ECOCs often significantly 
increased the classification accuracies for C4.5 [Quinlan, 1993] and networks 
trained by backpropagation [Rumelhart et al., 1986], although training ECOCs 
is slow because they must learn 1 concepts (i.e., one per output bit). 

Kong and Dietterich [1995] showed that ECOCs work well with global learn- 
ing algorithms on multiclass classification tasks because they can reduce both 
the variance and bias components of the output bit errors. Variance results from 
random variation and noise in the training set and from any random behaviors of 
the learning algorithm itself. ECOCs reduce variance through a voting process 
[Perrone and Cooper, 1993]: because Hamming distance determines the "win- 
ning" prediction (i.e., closest codeword), each output bit prediction corresponds 
to a vote for classes whose codewords match the predicted value. 

Bias instead refers to an algorithm's systematic errors. These can also be 
reduced by voting, but only when the individual predictions are uncorrelated, 
such as by averaging the contributions of different prediction algorithms (e.g., 
[Zhang et al., 1992]). Alternatively, the same algorithm can be used multiple 
times, but it must vote on different subproblems (i.e., using different class de- 
cision boundaries) that cause the algorithm to generate different bias errors. 
When output bits have good column separation, global algorithms like C4.5 can 
induce different class boundary hypotheses for different output bits. 

1.2 P r o b l e m  and  p r o p o s e d  so lu t ion  

Suppose that a query q is in class i but a classifier CL (without using ECOCs) 
misclassifies it as k. Suppose also that CL~co~ uses error-correcting output codes. 
Assume further that sij and Ski (j  = 1 , . . . , l )  are the two encodings of classes i 
and k, respectively. CLeco~ can "correct" CL prediction errors for q if and only 
if it assigns to q the codeword (]t ( q ) , . . . ,  i t(q))  and there are more j such that 
]j(q) = s,j than ]j(q) -" Skj (i.e., for any class k in l<k<m).  

When CL is a local classifier (e.g., nearest neighbor) q's predicted bit value 
]j (q) will always be the same as the bit value of its nearest neighbor q~. Therefore 
if the nearest neighbor misclassifies q then its ECOC variant will also misclassify 
q. Thus extending nearest neighbor with ECOCs will not modify its class pre- 
dictions. More generally, this holds for other distributed output representations, 
including one-per-class. Kong and Dietterich have shown that a global classifier 
(e.g., C4.5) can avoid this problem. That is, C4.heco~ can predict/ j(q) = sij for 
some j and ]j(q) -" ski for some other j.  

Figure 1 exemplifies how ECOCs assist global but not local classifiers. It 
shows two output bit partitions for three classes ci (1_<i_<3) in a two-dimensional 
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Fig. 1. Class Boundaries (solid lines), Class Groupings (shadings), and a Global Learn- 
er's Partition Boundary Hypotheses (dashed lines) for Two Output Bits 

continuous space, where each class has a single training instance xi. The solid 
lines define the class boundaries, the shadings define each bit's class partition, 3 
and the dotted lines show the partition boundary hypotheses that  might be 
induced by a global learner, where the predicted class of each rectangle is the 
class of its enclosed instances. Thus, the first hypothesis is wrong on q while 
the second is correct. Therefore, the second bit function can help correct the 
first error, where the underlying assumption is that the majority of hypotheses 
(bit functions) will correctly predict a query's partition. In contrast, nearest 
neighbor, when making each bit function hypothesis, will always identify x3 as 
q's closest neighbor, and predict xa's partition. 

In this paper, we present empirical evidence that  ECOCs can substantially 
improve the accuracies of the nearest neighbor classifier by incorporating an 
appropriate feature selection algorithm. Bit-specific decision boundaries can be 
obtained for nearest neighbor by applying feature selection independently for 
each bit, which yields a different distance function for each bit. This in turn 
allows a different nearest neighbor to be selected for each bit's prediction, which 
decorrelates the output bit errors. The bias/variance decomposition of the error 
(Section 4) reveals that this accuracy improvement is obtained by drastically 
reducing bias at the cost of moderately increasing variance. 

2 Local Learning with ECOCs 

To work well, ECOCs require that  the errors for each of the output  bits be 
Uncorrelated. Therefore, we extended IB1 [Aha et al., 1991], an implementation 
of nearest neighbor, to use different features when computing distances for each 
output  bit. Figure 2 summarizes the training algorithm scheme for this extension, 
named IBlcdwd. Using different codeword generation procedures (e.g., atomic, 
one-per-class, or eeoc), IBlcdwd yields different classifiers. Section 2.1 defines its 
algorithms for creating ECOC codewords and Section 2.2 describes how it selects 
features. 

3 The grey area denotes the set of examples that the output bit function maps to 1. 
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IBlc~d(X, C, t, n) 

X: Training set 
C: Set of classes 
l: Number of bit functions (i.e., codeword length) 
n: Max iterations allowed in schemata search 
S: Codewords (fj is the j-th output bit function from S) 
F: Feature subsets (one subset per output bit) 

1. S := create_codewords(C,l)  
2. FOR j = l to I DO: 
3. F~ := race-schemata(X, fj, n) 
4. RETURN {S, F} 

Fig. 2. IBlcd,,~: An Abstraction of IB1 for Alternative Output Representations 

2.1 Generating ECOC codewords 

The first step in IBlcdwd inputs C, the set of classes, and l, the number of output  
bits per codeword. The function create_codewords generates the set of codewords 
S, one for each of the m classes ci E C. We describe in the following how to 
generate ECOC codewords. Atomic and one-per-class codewords are generated 
as explained in Section I . i .  

Algorithms for generating ECOC codewords should maximize both row and 
column separation. For classification tasks where m<7,  create_codewords uses the 
exhaustive codes technique [Dietterich and Bakiri, 1995]. It creates all 2 m-1 - 
1 possible codewords that  are both column and row separated. The resulting 
codewords have Hamming distance h = 2 m-2. 

When m > 7, create_codewords employs a variant of Dietterich and Bakiri's 
[1995] randomized hill climbing algorithm. Our variant extends the original al- 
gorithm to search more efficiently: it searches in directions that  either increase 
row or column separation, or assist in escaping from local maxima. It initially 
generates m boolean codewords of length l, drawn randomly according to a 
uniform distribution. It then iteratively modifies these codewords, yielding the 
set of codewords with maximal row and column separation. During each itera- 
tion, it selects the two most similar codewords (rows) and the two bit partitions 
(columns) that are most similar or most dissimilar. However, the columns are 
selected only if the intersection of these rows and columns (a 2 × 2 boolean matr ix  
aij) has either of the following properties: 

1. If the columns have small Hamming distance, then either the two rows or the 
two columns ofa i j  must be equal (i.e., a l t  = a12 and a21 = a22 or a l l  = a2t 
and a12 = az2). 

2. If the columns have large Hamming distance, then the two columns of aij 
must differ (i.e., a l l ¢  ai2 and a~l ~£ a22). 

Some of these four values (aij) are then changed as follows. If M1 four are equal, 
then the values on one of the two diagonals are inverted, which increases the 
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race-schemata(X,  fj ,  n): 

f3: An output bit function 
M: Error statistics matrix (l x 2) 
p: Schemata bit string of length d (initially all *'s) 
q: Schemata bit string of length d (instantiates p) 
e: Prediction error (boolean) 

1. FOR i ~-- I TO I DO: 
2. M := initialize(p) 
3. DO (k ~- 1 TO n): 
4. x := random-select(X) 
5. q := select-constrained-string(p) 
6. e := compute-error(IBl,x, f:, q) 
7. M := update-matching-statistics(M, q, e) 
8. UNTIL winner(M) or (k = n) 
9. p := update-winning-feature(p, M) 
10. RETURN features selected in p 

Fig. 3. The Race-Schemata Algorithm for Feature Selection (see Figure 2 for additional 
documentation) 

separation of these rows and columns by two. Otherwise, one of these four values, 
randomly selected, is inverted. This does not always increase total  separation,  
but it helps to escape from local m a x i m u m  by exchanging row with column 
separation (or vice versa). The search process is stopped after a pre-determined 
m a x i m u m  number of codeword changes has occurred. 

2.2 S e l e c t i n g  f e a t u r e s  

After creating the codewords, IBlcdw8 calls ra ce - s chema ta  (Figure 3), which in- 
puts the training set X, a bit function f j ,  and the max  iteration number  n. It  
returns the subset of features selected by a variant of the schemata  racing al- 
gori thm [Maron and Moore, 1997] (see [Ricci and Aha, 19975]). R a c e - s c h e m a t a  
searches over the space of schemata strings p E P of length d, the number  of 
features, whose characters are O's (feature is not selected), l ' s  (selected), or , ' s  
(selected with probabili ty 50%). Step 2 begins one race for each (remaining) 
* in the schemata  p, resetting each feature 's  error statistics for both  0 and 1. 
For instance, the first t ime d races start ,  and in each race schemata  of type 
"* .  • .*  0 , . . . * "  compete against %.  - - ,  1 , -  • . , " ,  with 0 and 1 in the same posi- 
tion. The interior loop (steps 3-8) iterates until the next race winner is found or 
n iterations are reached. Each iteration randomly selects a training instance x, 
selects a binary string q (without , ' s )  that  matches the O's and l ' s  currently in p 
(i.e., it matches at least one of the schemata  being raced), computes  IB l ' s  error 
on x for bit function f j  using the features selected in q, and updates  the error 
statistics for all the schemata  being raced that  match q. The error of a schemata  
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is computed by averaging the error of matching samples. If a "winning" fea- 
ture is found (i.e. it is highly unlikely that the error of the other schemata is 
significantly less) then the interior loop terminates and p is updated by fixing 
the winner's bit value, changing it from ~ to either 0 or 1 (see [Ricci and Aha, 
1997b] for more details). Race-schemata returns the features whose values in p 
are 1 (i.e., a selected subset of features). 

3 E v a l u a t i o n  

We empirically evaluated our hypothesis that ECOCs can increase IBl ' s  ac- 
curacies, when coupled with a feature selection algorithm, in situations where 
feature selection yields different features for each output bit. Thus, we focused 
on two independent variables in our experiments: the output representation for 
IB1 and whether it employed feature selection. 

We compared three instances of IBlcdwd using the three output encodings 
described in Section 1.1. Their names are IBlatomic, IBlopc, and IBle¢oc for the 
atomic, one-per-class, and ECOC output representations, respectively. Figure 2 
applies to all three algorithms except that create_codewords does not modify the 
single-codeletter codewords for IBlatomic and generates only simple one-per-class 
codewords for IBlopc (e.g., 10. . .0,  01 . . . 0 , . . . ,  00. . .  1). However, as explained 
in Section 1.2, distributed output representations will not modify IBl ' s  clas- 
sification behavior when feature selection is not performed. Thus, rather than 
reporting results for all six combinations of independent values (i.e., three output 
representations, either with or without feature selection), we report the results 
for only four of these combinations: the atomic output representation without 
feature selection plus all three output representations when using feature selec- 
tion. 

3.1 D a t a  Sets  

We selected seven data sets (Table 2) from the UCI Repository [Merz and Mur- 
phy, 1996] that have only numeric or boolean features, no missing values, and at 
least four classes. Even if ECOCs are applicable to general data sets, we avoided 
those with symbolic features because they often require distinct weighting met- 
rics (e.g., [Stanfill and Waltz, 1986]), which complicates isolating the effects of 
feature selection. Data sets with fewer than four classes do not greatly benefit 
from ECOCs. We also used three additional proprietary data sets concerning 
cloud classification. We will use abbreviations for the data set names. 

We conducted a ten-fold cross validation on the data sets with the following 
exceptions: we used only the usual single training and test set for IS due to its 
large size, we used only five folds for VO due to its structure, and we inverted 
the training and test sets for SE due to its ease. 
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Table  2. Selected Data Sets (C=Classes, d=dimensionality) 

Glass Clouds98 Clouds99 Clouds204 Isolet Letter Satellite Vowel Segmentation Zoo 
Code GL CL98 CL99 CL204 IS LE SA VO SE ZO 

Size 214 69 321 500 7797 20000 6435 990 2310 101 
ICI 6 4 7 10 26 26 6 11 7 7 

d 9 98 99 204 617 16 4 10 19 16 

Tab le  3. Average Percent Accuracies and Standard Deviations 

Data Set Feature Selection 

GL 
CL98 
CL99 
CL204 
IS 
LE 
SA 
VO 
SE 
ZO 

No Feature Selection With 
IB latomic I B 1 ~tomic 
68.3=h11,9 
64.0±15.1 
53.9=t=9.3 
60.6=t=7.9 
84.6 
83.4=t=2.3 
80.7±1.3 
57.74-8.0 
96.8± 1.1 
94.5=t=6.4 

IIBlopc IIBle¢o¢ 

69.1-t-11.5 67.2±8.3 73.8-t-7.8 
65,7i18.1 65.5±13.4 
58.5±9.3 4 8 . 6 ± 8 . 3  
57.8±6.7 $6.0±5.1 
84.0 24.4 
83.5±2.2 83.5±2.1 
80.5±2.7 79. 7±1.7 
57.7:1:8.0 57.7±8.0 
96,8:1:1.1 96.8±1.1 
92.7±8.4 94.5±6.4 

65.5±11.6 
59.8±8.4 
73.8i4.6 
90.4 
84,9±3.2 
82.2±1.6 
57.8±8.1 
96.9±1.1 
94.5±6.4 

b o l d f a c e :  s ig l l i f icant ly  lower l - t a i l e d  t - t e s t  accurac iea  t h a n  1 B l e c o c  (p < 0 .05)  

~tahca: slgnific&ntly lower 1- ta i led t - t e s t  a<cur~cies  t h a n  I B l a l o m ~ c  wi th  no f ea tu r e  se lec t ion  (p < 0 .05)  

3.2 E m p i r i c a l  c o m p a r i s o n  

Table 3 summarizes  the results of  our experiment .  Our  p r imary  finding is tha t ,  
when feature selection is usefld and when different features are selected for dif- 
ferent bit functions, ECOCs can significantly improve the accuracy of the local 
learner IB1.  

Feature selection was not always appropriate;  it increased accuracy on only 
four da t a  sets, and never significantly increased accuracy. IB 1 ¢coc performed well, 
"repairing" IBl~to,~ic's accuracy whenever it was reduced by feature selection. 
I B l~coc'S accuracies were always significantly higher or not  significantly different 
than  the other  a lgor i thms '  accuracies. 

We hypothesized tha t  E C O C  representat ions increase accuracy for high- 
dimensional  da t a  sets where different feature subsets are useful for learning dif- 
ferent ou tpu t  bits (CL98, CL99, CL204, IS, SA). Thus,  we examined whether  the 
modified racing schemata  a lgor i thm selected different features for different bit  
functions.  We define Selected as the average number  of  features selected per out -  
put  bit  function,  and ComlnPairs as the average number  of  features in c o m m o n  
selected for a given pair  of bit functions.  The  rat io of  Selected to  ComInPairs 
is a rough measure of the variabili ty of  the features selected a m o n g  different bit  
functions.  
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% IB1 Increase vs. IBlatomic acoc 

tO  

O w I ! 

2 4 6 B 10 
Average # of Selected Features/Ave # Common Between Bite 

Fig. 4. Correlation Between Variances in the Feature Selection Per Bit and Average 
ECOC Accuracy Increases Versus IBlato,~¢ Without Feature Selection 

Figure 4 plots, for each data set, the ratio of Selected to ComInPairs against 
the percentage accuracy improvement obtained by IBle~o¢ when compared with 
IBlatornic (without feature selection). The correlation of these variables is fairly 
high (0.87), suggesting a linear relationship: ECOC accuracy gains tend to in- 
crease with increasing diversity among the features selected per output bit. The 
line in Figure 4 is the linear regression equation computed from these values. 

4 B i a s ,  V a r i a n c e ,  a n d  E r r o r  D e c o m p o s i t i o n  

This section first reviews Breiman's [1996] definitions for bias and variance (i.e., 
for classification tasks) and then presents the error decomposition for some of 
the data sets. 

A classification problem is completely described by k real deterministic func- 
tions P ( Y  = i lX  = x), where X describes the input parameters and Y the 
output classes. The minimum misclassification rate is obtained using the Bayes 
optimal classifier: 

YB(X) = arg m.axP(Y = ilX = x) (1) 
$ 

Given a finite training set T = {(xi, Yi) : i = 1, . . . ,  m} the classifier induced by 
a supervised learner depends on T, which we denote as Y ( x l T  ). The aggregate 
classifier YA (z) can be defined as: 

YA (x) -" arg max P (Y (x IT) = i) (2) 
t 

The predictions of the Bayes optimal classifier and aggregate classifier differ 
when P(~ ' (x lT  ) = i) ~= P ( Y  = iIX = x). Sreiman defines a classifier to be 
unbiased at a if YA(X) = YB(X). Let U be the set of instances at which 1? is 
unbiased and B its complement. The bias, variance, and error decomposition are 
defined as follows: 

Bias(} ' )  = P(Y(¢ )  • Y ( x ) , x  e B) - P (Ys ( x )  # Y ( x ) , x  • B) (3) 

V a t ( Y )  = P(~'(¢) # Y(¢) ,  x e U) - P(YB(¢) ~£ Y(x ) ,  x • lt) (4) 
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Table 4. Bias and Variance Decomposition of tile Error for Archived Data 

algo Glass 
IB1 0.3181 
Bias 0.302 
Variance 0.016 
IBlatomic 0.287 
Bias 0.178i 
Variance 0.109 
IBlovc 0.313 
Bias 0.232 
Variance 0.080 
IBlecoc 0.234 
Bias 0.177 
Variance 0.057 

Clouds98 Clouds99 Clouds204 
0.390 0.432 0.385 
0.374 0.408 0.371 
0.016 0.024 0.013 
0.349 0.422 0.392 
0.286 0.335 0.297 
0.063 0.087 0.096 
0.403 0.481 0.566 
0.347 0.390 0.418 
0.056 0.091 0.148 
0.364 0.374 0.268 
0.294 0.333 0.209 
0.070 0.041 0.058 

Zoo 
0.034 
0.027 
0.007 
0.038 
0.031 
0.007 
0.047 
0.039 
0.008 
0.028 
0.022 
0.006 

Er(Y) = Er(YB) + Bias(} p) + Vat(Y)  (5) 

To estimate bias and variance, we randomly split the data  into t00 partitions, 
with 90% of the data used for training and 10% for testing. We used the relative 
frequency that each instance x was classified as i to estimate P(Y(xlT)  = i). 
The bias set B and its complement U can be obtained based on these estimates. 
Given that each instance is unique in each of our data  sets, we assumed, as did 
Kohavi and Wolpert [1996], that the Bayes optimal error rate is zero for each 
data  set tested (see also [Ricci and Aha, 1997a]). The results of the experiments 
conducted on some of the data sets are shown in Table 4. 

From these results we conclude that ECOCs drastically reduce the bias com- 
ponent of the error at the cost of moderately increasing the variance. Bias is 
always reduced, from a minimum of 18% (Clouds99) to a maximum of 44% 
(Clouds204). Conversely the decrease in the total error obtained by IBl~coc is 
moderated by an increase in variance (i.e., 1Bl~co~'S variance was at least twice 
IBlatomic'S variance for each data set). 

5 D i s c u s s i o n  

In addition to the research reported by Dietterich and his colleagues, this re- 
search was inspired by Aha and Bankert [1997], who reported promising ECOC 
results for one data  set using a k-nearest neighbor variant coupled with a forward 
sequential feature selection algorithm. This paper extends their work, exploring 
whether feature selection can decorrelate output  bit errors sufficiently for near- 
est neighbor to work well with ECOCs. We found similar behavior with k > 1 
in other experiments (not reported here). 

Previous research on ECOCs did not stress feature selection, which is crucial 
for some tasks. Due to their low training costs, nearest neighbor classifiers are 
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excellent for use with expensive feature selection approaches [Aha and Bankert, 
1997]. Perhaps the most effective feature selectors are those that guide search 
using feedback from the classifier itself. This is expensive because it requires 
evaluating the classifier on many feature subsets, which is a good motivation for 
using an inexpensive classifier such as nearest neighbor. Thus, our contributions 
are useful for multiclass classification tasks where (1) feature selection is needed 
and (2) obtaining high predictive accuracy is a priority. 

Although they can increase accuracy on some tasks, ECOCs have limita- 
tions. For example, the arbitrarily-generated class partitions corresponding to 
each output bit have no meaningful interpretation. Additional research could 
explore whether ECOCs can work well with meaningful (e.g., pre-determined) 
class partitions. Also, training ECOCs is slow because they must induce one clas- 
sifter per output bit, and they typically require using many more output bits than 
classes to perform well. Feature selection compounds this problem, which is why 
we selected a fast feature selector. However, because feature selection algorithms 
that incorporate classifier feedback are computationally expensive, alternative 
methods should be considered when speed is important. Finally, IBl~coc tended 
to work best with larger training sets, higher dimensional spaces, and when 
feature selection is appropriate. 

6 S u m m a r y  a n d  F u t u r e  W o r k  

We investigated the hypothesis that ECOCs can increase the classification ac- 
curacies of local learning algorithms (e.g., nearest neighbor) when used in con- 
junction with a feature selection algorithm. If feature selection yields different 
features for each output bit, then their errors will be decorrelated because dif- 
ferent class partition hypotheses will be generated for each output bit. This is 
the same reason why global algorithms increase accuracy when integrated with 
ECOCs. 

Our empirical results provide evidence for our hypothesis. We also hypothe- 
sized conditions under which this combination of algorithms will perform well, 
and presented evidence suggesting that it works well for tasks that require fea- 
ture selection and where different features are selected for each output bit. In 
some cases, the accuracy improvements were dramatic. 

Future research topics include using different distance metrics for different 
bit functions, using alternative feature selection algorithms, and investigating 
whether similar benefits can be obtained using feature weighting rather than 
feature selection algorithms. 
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