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Abst rac t .  There exists no memory of biologic evolution besides the 
individuals themselves. Indeed, the biologic milieu can change and a 
previously unfit action or individual can come to be more fi~; it would 
be most dangerous to rely on the memory of the past. 
This contrasts with artificial evolution most often considering a fixed 
milieu: the generation of an unfit individual previously explored is only 
a waste of time. This paper aims at constructing a memory of evolu- 
tion, and using it to avoid such fruitless explorations. A new evolution 
scheme, called mimetic evolution, gradually constructs two models along 
evolution, respectively memorizing the best and the worst individuals of 
the past generations. Standard crossover and mutation are replaced by 
mimetic mutation: individuals are attracted or repelled by these mod- 
els. Mimetic evolution is extended from binary to continuous search 
spaces. Results of experiments on large-sized problems are detailed and 
discussed. 

1 I n t r o d u c t i o n  

Biologic evolution takes place in a changing environment. Being able to repeat 
previously unsuccessful experiments is therefore vital. This could explain why 
Nature does not involve anything like an explicit memory: all the knowledge 
gathered by evolution is actually implicit and dispatched among the individuals. 

Conversely, artificial evolution most often tackles optimization problems and 
considers fixed fitness landscapes. The history of evolution should thus provide 
reliable information; unfortunately, exploiting the list of all previously generated 
individuals gets soon intractable as evolution goes on. This paper focuses on 
constructing a tractable memory of evolution, and using it to guide the further 
evolution steps. This memory is explicit, in contrast with the implicit memory 
represented by the current population; and it is collective, i.e. accessible to all 
individuals, in contrast with the local memory carried by the individuals (e.g. 
the mutat ion step sizes [SchS1]). 

Many works devoted to the control of evolution ultimately rely on some 
explicit collective memory of evolution. The memorization process can acquire 
numerical information; this is the case for the reward-based mechanism proposed 
by Davis to adjust the operator rates [Dav89], the adjustment of penalty fac- 
tors in SAT problems [ER96] or the construction of discrete gradients [HOG95], 
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among others. The memorization process can also acquire symbolic information, 
represented as rules [RS96] or beliefs [Rey94]. 

Memory-based heuristics can control most steps of evolution: e.g. selection 
via penalty factors [ER96], operator rates [Dav89], operator effects [HOG95, 
RS96]... Memory can even be used to "remove genetics from the standard ge- 
netic algorithm" [Ba195]: the Population Based Incremental Learning (PBIL) 
algorithm memorizes the best individual of previous populations, and uses this 
memory to generate the next population from scratch. 

Evolution by Inhibition symmetrically memorizes the worst individuMs in 
each generation; this memory is used to modify the current population. The 
underlying metaphor is that of the Loser, virtual individual summarizing the 
past unfit individuals: offspring aim at be farther away from the loser, than 
their parents [SSR97]. 

This paper continues a previous work devoted to Mimetic Evolution, which 
combines PBIL and evolution by inhibition [PDR+97]. Mimetic evolution mem- 
orizes the best and the worst individuals previously met by evolution within two 
"models", the Winner and the Loser. Mimetic evolution is (remotely) inspired 
by the social evolution of individuals: any individual imitates, rejects, or ignores 
independently each one of the models. Practically, these models are used to 
evolve the genetic material via a single operator termed social mutation; social 
mutation is parameterized by the desired behavior of the individuals with re- 
spect to the models, so-called "social strategy". A range of social strategies has 
been defined, among which the Entrepreneur (which imitates the winner and 
ignores the loser); the Conformist (which imitates the winner and rejects the 
loser); the Phobic (which rejects the loser and ignores the winner; this behavior 
reproduces the Evolution by Inhibition scheme [SSR97])... Last, the Ignorant 
strategy (which ignores both models) serves as reference to check the relevance 
of the models. 

In this paper, all cited schemes (PBIL, evolution by inhibition and mimetic 
evolution) are extended from binary to continuous search spaces. The interest 
of this extension is twofold. First, it allows evolution to directly consider the 
search space (~=t N) in many cases (e.g. most engineering optimization problems 
are numerical); and indeed, the discretization of the search space can hinder 
evolution [B95]. Second, it incidentally settles the main drawback of binary 
mimetic evolution, namely the adjustment of the mutation rate (metaphorically, 
the strength of the social pressure). 

This paper is organized as follows. Section 2 first reviews some related work, 
and describes how the use of virtual individuals, imaginary individuals or models, 
can support evolution. Binary mimetic evolution is then briefly recalled, in 
order for this paper to be self-contained; and continuous mimetic evolution is 
detailed (section 3). Section 4 presents and discusses experiments on several 
large-sized problems in continuous search spaces. We last conclude and detail 
some perspectives of research. 
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2 S ta te  of  t h e  art 

A major question in the field of artificial evolution is that of the respective 
roles of crossover and mutation. Though the question concerns both binary and 
continuous search spaces, only the binary case will be considered in this section. 

Crossover traditionally relies on the Building Block hypothesis [Ho175, Gol89]. 
But a growing body of evidence suggests that crossover is efficient because it 
operates large step mutations. In particular, T. Jones has studied the macro- 
mutation operator defined as crossing over a parent with a random individual 1. 
Macro-mutation obviously does not allow the offspring to combine the build- 
ing blocks of their two parents; still, macro-mutation happens to outperform 
standard crossover on benchmark problems [Jon95]. 

More generally, standard crossover actually behaves like a biased mutation 
operator. The bias depends on the population and controls both the strength 
and the direction of the mutation. The "mutation rate" of standard crossover, 
e.g. the Hamming distance between parents and offspring, depends on average 
on the diversity of the population; and the "mutation direction" of standard 
crossover (which genes are modified) also depends on the population. 

On the other hand, binary mutation primarily aims at preserving the genetic 
diversity of the population. This can be done as well through crossover with 
specific individuals, deliberately maintained in the population to prevent the 
loss of genetic diversity. For instance, the Surrogate GA [Eva97] maintains 
imaginary individuals such as the complementary of the best current individual, 
or all-0 and all-1 individuals; crossover alone thus becomes sufficient to ensure the 
genetic diversity of the population, and mutation is no longer needed. Another 
possibility is to deliberately introduce genotypic diversity by embedding the 
search space 12 into {0, 1} x f2 and identifying the individuals 0~ and 1~, as 
done in Dual Genetic Algorithms [PA94]. 

Evolution can also be supported by virtual individuals, i.e. individuals be- 
longing neither to the population nor to the search space. This is the case in the 
PBIL algorithm, where the best individuals (elements of {0, 1} N) in the previ- 
ous populations are memorized within an element of [0, 1] g. This vector noted 
M provides an alternative to crossover and mutation, in that it allows PBIL to 
generate the current population from scratch: for each individual X and each bit 
i, value Xi is randomly selected such that P(X i  = 1) = A4i (where Ai denotes 
as usual the i-th component of A). M is initialized to (0.5, 0.5, ..., 0.5) and it is 
updated from the best individual Xma,  at each generation, by relaxation : 

M := (1 - ~ ) M  + aX.~o,: 

where a in [0, 1]) is the relaxation factor, which corresponds to the fading of the 
memory. The main advantage of PBIL is its simplicity: it does not involve any 
modification of the genetic material. The only information transmitted from one 

1 Note that this macro-mutation fairly resembles standard crossover on large popula- 
tions during the first generations of evolution. 
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generation to another is related to the best individual; still, it is not necessarily 
sufficient to reconstruct this best individual. This might hinder the exploitation 
of narrow highly fit regions, such as encountered in the Long Path problem 
[HG95]. Practically, one sees that even if AJ has very little difference with an 
individual on the path, the population constructed from .&/ might not overlap 
the path [SS96]. 

Evolution by Inhibition involves the opposite memory, that  is, the memory 
of the worst individuals in the previous populations. This memory noted £ (for 
Loser) is also an element of [0, 1] N, constructed by relaxation : 

£ :=  (1 - ~ ) £  + a X m i .  

where Xmin denotes the average of half the worst offspring, and a is the relax- 
ation factor. In contrast with PBIL which uses 2¢I to generate a new popula- 
tion, £ is actually used to evolve the current population via a specific operator 
termed flee-mutation. Flee-mutation replaces both mutation and crossover; for 
each individual X, it selects and flips the bits most similar to those of the loser 
(minimizing IX~ - ~:~I). The offspring thus is farther away from the loser, than 
the parent was. Metaphorically, the goal of this evolutionary scheme is: Be dif- 
ferent from the Loser ! And incidentally, this reduces the chance for exploring 
again low fit regions. 

The potential of evolution by inhibitions is demonstrated for appropriate set- 
tings of the flee-mutation rate (number of bits mutated): EBI then significantly 
outperforms PBIL [SSR97], which itself outperforms most standard discrete op- 
timization algorithms [Bal95]. But the adjustment of the flee-mutation rate 
remains an open question. 

3 M i m e t i c  e v o l u t i o n  

Mimetic evolution melts PBIL and evolution by inhibition: besides the Loser 
constructed by EBI, it uses the memory of best individuals constructed by PBIL, 
or Winner, to guide evolution. This section briefly recalls how mimetic evolution 
was implemented in binary search spaces (more detail is found in [PDR+97]), 
and details how it extends to continuous search spaces. 

3.1 B i n a r y  mimet ic  evolut ion 

Two elements of [0, 1] N, thereafter called models, are gradually constructed by 
relaxation from the population. These models, the winner )4; and the loser £,  
respectively reflect the best and the worst individuals encountered by evolution 
so far (Table 1). 

Let us first examine how )42 can help evolving individual X. Given the most 
fit individuals of the population (X, Y and Z), some possible causes for being fit 
are (bit2 = t), or (bit3 = 1), or (bit5 = 1) (a majority of the most fit individuals 
has those bits set to this value). Thus, one might want for instance to flip bit2 
and let bita unchanged in X; this amounts to making X more similar to dW, 
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which goes to }41 in the limit. Metaphorically, X thus "imitates" the winner }d]. 
Practically, the bits mutated in X are selected by a tournament of bits, as those 
maximizing IXi - Wil; this draws the offspring closer to W than X was. 

1 2 3 4 5 Fitness 
X 0 0 1 0 0 Fit 
Y 1 i i 1 1 Fit 
Z 0 1 1 0 1 Fit 

dW0.33 0.66 1 0.33 0.66 
S 0 0 0 1 0 Unfit 
T 1 0 1 1 1 Unfit 
U 1 0 0 1 1 Unfit 
d~ 0.66 0 0.33 1 0.66 

}/Y := (1 -- aw)W + awd)/Y 

/: := (1 - oq ) f_. -t- cq d ~. 

Table 1. Individuals and virtual individuals 

This mechanism is refined by taking advantage of the loser too. For instance, 
according to dW, it might be a good idea to mutate bit 5; but d£: suggests that 
(bit5 = 1) is not a factor of high fitness. This leads to select the bits to mutate, 
so that the offspring "imitates" )W and "rejects" /~. 

Practically, a new operator termed social mutation is defined. In each indi- 
vidual X, social mutation modifies a user-supplied number M of bits; these bits 
are selected by tournament as those maximizing IXi - Wi] - IXi - £ i l ;  the bits 
mutated thus depend on X and on the models. 
However, there is no reason why one could only imitate the winner and reject 
the loser. A straightforward generalization is to define a pair (Sw, 6L) in ]R 2, 
and to select the bits to mutate as those maximizing : 

 wlXi - +  LlXi - 

One sees that X imitates model 2¢/(= W or £) if~M > 0, rejects )k4 if~M < 
0, and ignores A,~ if ~M ~-~ 0. Social mutation finally gets parameterized by the 
pair (~w, ~L), termed social strategy. Some of these strategies have been given 
metaphorical names for the sake of convenience; obviously, other metaphors 
could have been imagined. We distinguish mainly: 

• The conformist, that imitates the winner and rejects the loser; 
• The phobic, that rejects the loser and ignores the winner; 
• The ignorant, that ignores both the loser and the winner. 

One notices that the social strategy is unchanged if ~w and ~z are multiplied 
by a positive coefficient. Social strategies can then be represented as angles. This 
angle gives the preferred direction of the individuals, in the changing system of 
coordinates given by the winner and the loser. Figure 1 shows the possible 
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Entrepreneur 

C o n f o r m ~ l l o w e r  

Rebel 

F igure  1. Mimetic Strategies 

directions, with angle 0 corresponding to rejecting the loser, and angle ~r/2 to 
following the winner. 

The main weakness of binary mimetic evolution is the adjustment of the so- 
cial mutation rate, that is the number of bits to mutate in each individual. The 
difficulties encountered have been discussed in [SSR97, PDR+97]. 

3.2 Con t inuous  social m u t a t i o n  

Mutation offers rather different difficulties depending on whether the search 
space is binary or continuous. 
In a continuous search space, mutation usually proceeds by adding a gaussian 
perturbation N(O, cq) to each component Xi of an individual X. The question 
is how much each gene should be modified, that is, how to set ai. To the best of 
our knowledge, the most efficient answer so far is given by self-adaptive muta- 
tion, stemmed from the Evolution Strategy scheme [SchS1, BS93]: the genotypic 
material of the individual is enhanced with the vector of step sizes (~1,. . . ,  C~N), 
and evolution then adjusts "for free" the cq. Practically, ~ri first undergoes a 
gaussian mutation with a fixed variance depending on the size of the problem 
(the recommended values of the parameters are indicated below; see [Sch81] for 
more detail). The modified cri is then used to modify Xi : 

Vg~ob := rN(0, 1) 
for  i = 1..N 

ei := ~i * ezp(rgtob + ~ocN(O, 1)) 

Xi := Xi + N(O, ~ri) 

1 

1 
7]oc ~ 

Evolution thereby hopefully favors individuals having both accurate phenotypes 
(i.e. with high performance) and accurate step sizes. 
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The extension of social mutation to continuous search spaces mostly requires 
to define how the winner and the loser are used to guide the mutation. Indeed, 
the computation of the winner and the loser straightforwardly extends from 
binary to continuous search space, with c~ and at denoting the relaxation factors 
of respectively the winner and the loser: 

W := (1 - c~,.)W + ~,.  d W  
£ : = ( 1 - c q ) g + a l d £  

where dW and d£ respectively stand for the average of the best (resp. worse) 
offspring. The relaxation factors a~ and at are equal in the experiments. 

We investigate two evolution operators. The first one, termed Fixed so- 
cial mutat ion,  involves a fixed social strategy (6w, ~fL). If we consider the 
bi-dimensional space including the individual at hand, the winner and the loser, 
a social strategy defines a direction in this 2D space (Figure 2). For a given 
mutation step size, this direction defines a target offspring. The fixed social 
mutation is built from a standard self-adaptive gaussian mutation, and biased 
so as to produce an offspring closer to the target offspring, than the parent. 

:i I 
i 

Figure  2. Fixed social mutation in lP~ 2, for a Conformist strategy. 

More precisely the sign of the gaussian perturbation is determined so as to 
move the offspring in the desired direction: 

X i  := X i  + s ign (SL(Xi  -- £ i )  + 6 w ( X i  - Wi ) )  × IN(O,¢i) t  

where s ign(A)  is 1 if A is positive, -1 otherwise. 
This evolution scheme is much dependent on the user-supplied strategy: the 
only degree of freedom is provided by the fact that the system of reference given 
by the winner and the loser evolves itself. Still it will be hard to recover from a 
bad social strategy. 

A second evolution operator is termed self-adaptive social mutation, as it 
self-adapts the social strategy of the individuals. The self adaptation of the 
social strategy parallels that of the mutation step size in self-adaptive mutation. 
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More precisely, the individual is enhanced with the description of its personal 
strategy, given as two positive or negative scalars 5w and 5L- Evolution thus 
adjusts for free the social strategy most suited to each individuM 2 

The self-adapted social strategy again determines a target offspring with: 

x i  := x i  + ~ L ( x i  - z,i) + ~ w ( x ~  - w i )  

This extends naturally to self adaptive vectorial social mutat ion where 5w 
and (~L a re  vectors. 

3.3 C o n t i n u o u s  P B I L  

To the best of our knowledge, there has been only one other a t tempt  to extend 
PBIL to continuous search space so far [STMS97]. This extension is based on 
uniform sampling of the domains of the genes, and the PBIL mechanism is 
used to gradually restrict the domains explored. Let [Mini, Maxi] be the initial 
domain of the i-th gene, and let Moyi denote the half sum of Mini and Maxi. 
When generating an individual, one first decides whether Xi should belong to 
[Mini, Moyi] or [Moyi, Maxi], with: 

Proba(Xi > Moyi) = kVi 

One then draws Xi with uniform probability in the selected half interval. When 
Wi reaches a given threshold (.1 or .9), the domain [Mini, Maxi] shrinks ac- 
cordingly (being respectively replaced with [Mini, moyi] o r  [moyi, maxi]). One 
disadvantage of this procedure is that  the search space can only shrink: there is 
no way to recover from a bad previous choice. 

The approach investigated here relies on the natural extension of the com- 
putation of W, from the two best individuals X ~ ,  and X ~ =  and the worst 
individual X,~i~, as employed in [Ba195] to decrease the odds of premature con- 
vergence of W. One finally has: 

W := (1 - ~)W + ~(X~a = + X2ma= - Xmin) 

)/Y thus gives the "center" of the region to be sampled in the next population. 
The sampling involves independent gaussian distributions for each gene i, cen- 
tered on IA2~, and we investigate three mechanisms for determining the variance 
~ri of the distributions. 
The first one, termed Constant PBIL, explores a fixed region centered on W, 
with ~i = .1. 
The second one, termed Adaptive PBIL, computes o'i as the variance on gene i 

2 Incidentally, this scheme is more satisfactory from the point of view of social modeling 
(but indeed social modeling is far beyond the scope of this paper), as it constructs 
populations combining various types of social strategies. It would be most interesting 
to get, as a by-product of evolution, the social strategy most adapted to the last 
explored regions of the fitness landscape. 
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of the best half of the population. 
The third one, Sel f -Adapt ive  P B I L ,  self adapts the variance (ri per individual 
as follows. One considers a standard (# + )~) evolution strategy, where an off- 
spring is generated from 14] and the variance o'i of the parent at hand. Here, ES 
evolves the behavior of the individual with respect to model W, so that the set 
of behaviors retained is most susceptible to improve W. 

4 E x p e r i m e n t a l  V a l i d a t i o n  

4.1 P rob lems  

The experiments consider the same functions as [Ba195]. 

Yi = Zi  Yi -~ X i ' 4 ~ Y i - - 1 ,  i>_2  

Yl = Xl 

100 
F z  - 10_ 5 + ~Jy~l 

100 
Yi = Xi + s in (y i_  1), i > 2 F2 - 

100 
F3= 

10 -5  + Z' i l .024 x (i + 1) - x i l  

Functions Fz,/;'2 and F3 are defined on [-2, 56, 2.56[ 1°°. 

10 -5 + Eilyil 

4.2 Experimental setting 

The evolution scheme is a (10+50)-ES: 10 parents produce 50 offspring and 
the i0 best individuals among parents plus offspring are retained in the next 
population. A run is allowed 200,000 evaluations; all results are averaged on 20 
independent runs. The relaxation factors aw and az are both set to .01. 

The results obtained are represented in polar coordinates (p,0), where 0 
stands for the social strategy (see section 3.1) and p denotes the average best 
performance obtained for this strategy (each point on the circle thus represents 
4,000,000 evaluations). The unit circle serves as reference: it corresponds to 
the ignorant strategy, that is, a standard (10+50)-ES. 

The results of adaptive social mutation and continuous PBIL are also indi- 
cated. 

4.3 Con t inuous  resul t s  and  Discussion 

In a continuous search space, the ignorant strategy coincides with a standard 
ES; no wonder that it gets good results, and is hard to be caught up. 

The bad performance of fixed mimetic evolution can partly be blamed on 
what follows. The direction of evolution of the individuals is given in the chang- 
ing system of coordinates defined by the winner and the loser - -  and this direc- 
tion does not change for non-adaptive social mutation. Still, the loser L: changes 
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~ F 1  (2.9 (5.9~) 

Figure  3. Fixed continuous social strategies on F1, F2 and F3. The reference 
circle represents the performance of the ignorant (given in parenthesis) 

faster than the winner 142 as a~ = al and the best individuals of the popula- 
tion vary less than the worst individuals. But following an invariant direction 
defined with respect to both a fixed and a changing reference point can result 
in satellizing the individual around the fixed reference point; this also holds for 
vectorial social strategy. 
Additional experiments show that setting a~ << at actually improves the per- 
formance of fixed mimetic evolution for some strategies, though it still does not 
catch up the ignorant strategy. 

Reference (Ignorant) 
CME with Self Adaptation of ~w, (~L 
CME with Self Adaptation of dw, ~L 
Constant-PBIL 
Adaptive-PBIL 
Self-Adaptive-PBIL 

F1 F~ F3 
2.91 4.56 5.94 
1.18 2.57 3.40 
0.07 0.87 0.87 
3.13 3.55 13.69 
1.09 2.31 6.20 
1.34 1.85 2.69 

Table 2. Continuous Mimetic Evolution (CME) and PBIL 

The adaptive social mutation encounters other problems. Let us first con- 
sider the scalar case. The social strategy ((fL,~W) controls both the direction 
of mutation, and the mutation step size (section 3.2). Coefficients ~L and 6w 
must therefore be unbounded and can be both positive and negative (to explore 
all directions of the bi-dimensional space defined by the winner and the loser). 
Still, the update of (~L and 3w, copied from the self-adaptive mutation, primarily 
aims at exploring ~+  rather than ffL The bad performance of adaptive social 
mutation is thus explained by the fact that the social strategy is not adjusted 
with sufficient flexibility. Same holds when ~L and 5w are vectors rather than 
scalars. Further research is concerned with designing other mechanisms to evolve 
the social strategy with more flexibility. 
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The continuous PBIL obtains good results. The fact that Constant PBIL 
happens to supersede the binary PBIL and ES, satisfactorily demonstrates that 
the winner is accurately determined and duly wanders in the desired regions. 
Still, Table 2 shows that none of our attempts so far to adjust the range of 
exploration, was successful as the best results are obtained for a fixed ai. Em- 
pirically, the adaptive and self-adaptive adjustments of ~i rapidly lead to small 
values of ei, which hinders the search as they can only slowly increase when the 
models rapidly change. 

5 Conclusion 

This paper investigates how the memory of evolution can support and speed 
up evolution. Given the fact that the exhaustive history of evolution cannot 
be tractably exploited after the first generations, the individuals previously met 
by evolution are packed in form of models. The PBIL algorithm [BC95] and 
Evolution by Inhibitions [SSR97] demonstrated how evolution can respectively 
take advantage of the model memorizing the best and the worst individuals. 
A major drawback of these approaches is that evolution easily gets stuck, as 
individuals only observe one model and adopt a single predetermined behavior 
(imitation or avoidance) with respect to this model. 

Mimetic evolution combines these schemes and uses both models to evolve 
the current population in binary search spaces [PDR+97]. As one can combine ad 
libitum the influence (basically attractive, repulsive or indifferent) of each model, 
an individual is offered a rich variety of directions of evolution, metaphorically 
the "social strategies" of evolution. And indeed, the use of two models avoids 
some deadlocks of evolution, for the influence of one model acts as a perturbation 
with respect to the influence of the other one: it gets more difficult to get stuck. 

Still, the extension of mimetic evolution to continuous search spaces pre- 
sented in this paper, shows the limits of the memory mechanism proposed so 
far. In particular, we clearly need an indicator telling when a model gets stuck, 
so that to modify the social strategy of an individual regarding this model. 
Moreover, the continuous mimetic machinery mixes up two different notions, 
namely the recommended direction of evolution in the changing system of coor- 
dinates defined by the models, and the social pressure, namely how far should 
an individual go in this direction. 

Further research is concerned with implementing two kinds of memory, up- 
dated at different speed rates. The comparison would hopefully allow one to 
detect that the models get irrelevant or ineffective to the current stage of evolu- 
tion: the model gets stuck if the fast recent memory is closer and closer to the 
slow antique one. Obviously, such a mechanism could take a clue from the long 
term versus short term memories of human beings. 
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