
An Ontology Approach to Product Disassembly *

Pim Borst z and Hans Akkermans ~,2

t University of Twente
Information Systems Department INF/IS

P.O. Box 217, NL-7500 AE Enschede
The Netherlands

Email: {borst,akkerman}@cs.utwente.nl

2 Netherlands Energy Research Foundation ECN
EO. Box 1, NL-1755 ZG Petten

The Netherlands
Email: akkermans@ecn.nl

Abstract. In recent years, growing ecological concern has prompted fo r ' design
for environment'. One way to achieve this is to design products that are easy to dis-
assemble, because this improves the ability to reuse or recycle parts of a product.
This paper presents a computational theory for product modeling and reasoning
about product disassembly. This theory, implemented in the PROMOD system, is
based on an ontology of different connection types between product components.
For the task of reasoning about disassembly, the standard topological relation that
expresses that two components are connected or in contact proves to be inade-
quate. We therefore introduce, within a topological context, a small number of new
ontological primitives concerning the rigidness of connections and the constrained
degrees of freedom, which in effect are task-oriented abstractions of geometric
and physical-chemical properties of products. On this basis, it is demonstrated that
one can automatically generate all feasible product disassembly sequences, and in
addition perform an ecological cost-benefit analysis. The latter provides a prefer-
ence order over disassembly sequences, allowing to compare alternative product
designs for recycling and reuse. Finally, we show how the proposed ontology for
disassembly is an extension of existing ontologies dealing with physical systems,
is based on the same ontology design principles and discuss how it compares to
ontologies of full geometry.

1 I n t r o d u c t i o n

In recent years, growing ecological concern has prompted for 'design for environment '
(Fiksel 1996). One way to achieve this is to design products that are easy to disassem-
ble, because this improves the ability to reuse or recycle parts of a product. In analyzing

* This work has been carried out as part of the SUSTAIN project, with PR6 Product Ecology Con-
sultants and ECN as partners, and partially supported by the SENTER-IT Programme of the
Netherlands Ministry of Economic Affairs. Helpful discussions with Mark Goedkoop (PR6)
and Jan Braam (ECN) are acknowledged. We also thank Mark Goedkoop for kindly provid-
ing us with the coffee machine which we have thoroughly disassembled for the purposes of the
present study.

34

these aspects, one needs to determine all feasible ways to disassemble a product. They
can be jointly represented in an AND~OR graph (Fazio and Whitney 1987; Sturges Jr.
and Kilani 1992), with the fully assembled product as the root, the and-nodes indicat-
ing a disassembly operation splitting the product into subassemblies, and the or-nodes
representing different applicable operations that give rise to alternative ways to break
up a (sub)product (see Figurel). In such an AND/OR graph, each subtree that has and-
nodes as its leaves, and contains only one out of the alternative branches at each or-node
it encounters, describes a distinct disassembly sequence.

Fig. 1. Disassembly sequences of a simple product visualized in an AND/OR graph

In eco-design, an important goal is to determine the cost of disassembly as well as
the environmental benefit of the subassemblies that are separated. The energy required
to perform the disassembly operations might be used as a measure for the disassembly
cost. All components that were separated in the disassembly process are candidates for
reuse and have a positive impact on the benefits of disassembly. The degree to which
the materials in a separated part of the product can be recycled is determined by the mix
and the amounts of materials in that part. With such a cost-benefit analysis applied to
the AND/OR graph, one can determine, the disassembly sequence having the best cost-
benefit ratio, as well as the impact of design decisions by comparing alternative product
designs. Because it is usually only profitable to recycle or reuse a small number of parts
or components of a product, a good disassembly sequence will remove only these parts
from the product and leave the other parts unaffected. This is why the best disassembly
sequence will in general be different from the reversed assembly sequence.

In this paper we will present a general ontology-based approach to two important
tasks in product disassembly analysis:

1. automatically generating the AND/OR graph from a topological product model;
2. obtaining from the AND/OR graph the disassembly sequence having the best eco-

logical cost-benefit ratio.

An ontological approach to this problem appears helpful, because it is evident in dis-

35

assembly analysis that a notion of 'connectedness' plays a crucial foundational role
(Clarke 1981). As we will see, the standard topological relation, that expresses that two
components are connected or in contact, as incorporated in formal topological ontolo-
gies such as in (Borst, Akkermans, and Top 1997), proves to be not adequate for this
purpose. Nevertheless, we show that by extending a standard topological ontology with
a small number of new ontological primitives regarding the type of connections, we can
build product models that provide the knowledge to automatically carry out the men-
tioned tasks.

In See. 2 we introduce the basic concepts needed to build product models for disas-
sembly, and illustrate them by various examples. This theory has been implemented in a
knowledge system called PRoMOD. See. 3 describes how it reasons with these product
models for the purpose of disassembly. Sec. 4 indicates how the proposed ontology for
disassembly is an extension of existing ontologies in AI dealing with physical systems.
Sec. 5 surveys related work in computational (mechanical) engineering, and compares
our ontology of disassembly to ontologies of geometry.

2 Theory of Product Models for Disassembly

In disassembly analysis, a product is conceived of as an assembly consisting of product
components with mutual connections. Product components are the smallest parts of a
product that are relevant in a disassembly context. The most important attributes are the
material(s) they are made of and the amount of these materials. With these attributes it
is possible to determine to what degree the materials of a group of product components
can be reused or recycled.

2.1 Component Connections

Connections specify the places of contact between product components. It is allowed
that there is more than one connection between two product components. Connections
have properties beyond standard topology that are important for disassembly analysis.
When a component is situated between other components, the outer components are pos-
sibly in the way during disassembly. It can also be the case that the component in the mid-
dle can be removed by pulling it in another direction. But in order to do this, the product
components must be connected loosely. Two properties of connections are therefore of
importance: how rigid connections are (in the sense of physical forces) and how con-
strained (in a spatial or geometric sense) the direction of movement of components is.

Unfortunately, this implies that generally we have to deal with many, both geometric
and chemical/physical concepts. This we want to avoid, practically because in the design
stage of a product detailed models like 3D CAD drawings are often not yet available,
and computationally because it involves strong and complex ontological commitments.
However, it is possible in disassembly modeling and analysis to define task-oriented
abstractions of geometric and physico-chemical connection properties that do the job.
These abstractions are then brought into a topological ontology of component connec-
tion models by means of different connection types.

36

.... iiii

..... :::: i!i ii::?:::i ::i!i~i~ii~iiiiiiiiiiiii::i~i!ii!iiii

II i : : i I I
I I

(•) rigid against

Q loose against

Q rigid sideways

G loose sideways

--'-I bolt J

I

Fig.2. The four connection types and an associated component-connection model
bolt-and-nut system.

of a

Distinguishing four types of connections is already sufficient to be able to perform
practically useful disassembly analyses. These types are based on a dichotomy within
two important orthogonal dimensions. The first discriminating dimension is the men-
tioned rigidness of a connection. A useful dichotomy here is whether a connection is
rigid or loose, and relates to a distinction in engineering design known as force-based
versus shape-based connections:

rigid: A physical or chemical force keeps the product components together, so this force
must be overcome first to break the connection. (Example: components screwed or
sticked together.)

loose: Product components are in contact with each other, but in a purely spatial sense
without an additional binding force, so the connection disappears when the compo-
nents are moved apart. (Example: a glass standing on a table.)

The second distinguishing dimension is the direction in which a connection restricts
the movement of the connected components. The simplest possible conceptualization is
to introduce the following dichotomy:

against: The connection restricts movement in the direction perpendicular to the sur-
face of contact.

s ideways: The connection restricts movement in a direction within the plane of the sur-
face of contact.

This gives a two-by-two matrix, leading to four types of connections: rigid-against,
rigid-sideways, loose-against, loose-sideways. Fig. 2 depicts graphical representations
of these types, and an example how these types are used in a product model for disas-
sembly. When the rigid connection between the bolt and nut is broken (which requires
applying a physical force), the loose-against connections in the model can be simple un-
done by moving the connected components away from each other.

37

2.2 Force Loops

In the example in Fig. 2, the two plates are inbetween the two components they are con-
nected with. In this case, the direction of all connections are the same, but generally they
are not. Components can be inbetween several pairs of components in different direc-
tions. We must therefore model which connections are in the same direction, without
having to specify 3D vectors. We do this by employing the topological concepts of paths
and loops through connections to abstract and encode the geometric information. These
paths can be constructed by linking the connections that are in the same direction. In the
model in Fig. 2 we then see one loop running through all connections.

sideways
pull

sideways
pull

against
push

against
pull

against
push

against
push

against
against pull

push/pull

sideways ...~..~...
pull

against
push

against
pull

against
pull

Fig. 3. The possible transitions in force loops through connected components in a disassembly
model.

An easy way to determine the direction of connections and the paths that go through
them is to imagine what happens when the components connected by a loose connection
are pulled away from each other. For example, in Fig. 2, when the connection between
A and B is pulled, this implies that plate A is pushed against the bolt, the bolt is pulled
away from the nut, the nut is pushed against plate B and finally (although this may sound
at first sight as a contradiction) plate B is pushed against plate A. The outcome of this
sequence of forces depends on the geometry of the product and, as we will see later, turns
out to be exactly the information required for disassembly analysis.

In a rigidly connected product, the geometric structure is such that the components
connected by loose-against connections are pushed against each other. This will result
in loops through connections, as is the case in the example. Therefore, we will speak of
force loops. In cases where the product is not rigid, we will say that the loop is broken
or not intact.

3 8

Because the force sequences in a force loop depend on geometry, only certain force
transitions are possible when following a path, as shown in Fig. 3. When these restric-
tions are obeyed, the forces on connections in an intact force loop satisfy the following
rules:

- Loose-against connections are always pushed.

- Rigid-against connections are pushed or pulled.

- Sideways connections are always pulled.

When two components connected by a loose connection are pushed together, we will
say that the connection is enforced. This can only be the case when there is a loop going
through the connection that is intact. A formal ontological definition of the predicate
intact that holds for intact loops and enforced that holds for enforced connections reads:

intact(l) +-~ -,3 c: loops-through(l,c) A (broken(c) V (loose(c) A force(l,c,pull)))
enforced(c) ~ rigid(c) V (against(c) A 3 l: force(l,c,push) A intact(l))

These definitions assume that loops are defined by the loops-through(l,c) predicate
that relates connections c to the loops 1 they are in. The predicates against(c), rigid(c)
and loose(c) hold for against connections, rigid connections and loose connections re-
spectively. Finally, the ternary relationforce(l, cdO associates a force (push or pull) to a
node (connection) in a loop.

In more complex situations, there might be more than one connection in the same
direction on one side of a component, like in the model in Fig. 4. This can easily be
modeled by two force loops going through one connection. A situation where two con-
nections collectively form a virtual connection is modeled in Fig. 5. Determination of
the loops and forces would result in the three loops that are indicated in the figure, and
the definition of enforced presented here must be adapted. These cases require an exten-
sion of the modelling technique that cannot be explained in this article due to lack of
space.

loop 1 A loop 2

pull (
4

........ f ~ loop2

)! il B] -~SP ull

Fig. 4. Each loop individuaUy enforces the loose connection numbereM 1.

39

E
I

loop 2

Fig. 5. Two loops collectively enforce a loose connection.

2.3 Disassembly Operations

Disassembly operations performed on a product induce changes in its disassembly
model. According to the above conceptualization of connection types, two kinds of mod-
ification operators are distinguished: loosening operations that change a connection from
being rigid to loose, and breaking operations that delete loose connections. The first re-
quire applying a force (energy) to undo the rigidness, while the latter refer to changing
the spatial location by simply moving the components apart.

Disassembly operations like cutting, sawing and unscrewing change the types of the
connections involved from rigid to loose. In the bolt-nut example, loosening the bolt
is modeled by replacing the rigid-sideways connection by a loose-sideways connection.
Loosening operations can cause force loops to break. As a result, some loose connections
will no longer be enforced and certain parts of the product (called subassemblies) can
be easily separated from the rest of the product, by breaking operations. Again, the bolt-
nut example in Fig. 2 illustrates this. When the connection between the bolt and the nut
has been loosened, the bolt (or the nut) can be removed from the product. This actually
breaks (deletes) the connections between the bolt and the nut and the bolt and the plate.

2.4 S u b a s s e m b l i e s

Loosening of rigid connections may cause that groups of components can be removed
from the product. If this is the case, there may be no enforced connections between the
group and the rest of the product. Furthermore we demand that the group does not con-
tain smaller groups of components that can be separated. In other words, internal con-
nections in a group have to be enforced. In the ontology for disassembly, groups of com-
ponents having these properties are called subassemblies (formally defined in Sec. 5 as
an extension of a general systems ontology).

Each subassembly is a candidate for removal, but a direction has to be found in which
the subassembly can be moved away from the rest of the product. The geometric infor-
marion captured in the force loops can be reused to find the desired direction.

When a subassembly has a loose external connection that is not linked to another ex-
ternal connection of the subassembly by a force loop, it means that no component blocks

40

the subassembly in the direction of the first connection. Because other external connec-
tions of the subassembly have different directions and are not enforced, the subassembly
can be removed.

When the removal of the subassembly in the direction of a connection is blocked by
external components, a force loop goes through the connection and a second external
connection of the subassembly. But this is only the case in situations where such a force
loop leads to a connection on the opposite side of the subassembly that has not been
disconnected. The geometric information in the force loop can be used to see whether
this component actually blocks or not. This can be seen in Fig. 6. Situations where a
force loop leads to a connection on the opposite side and the subassembly is blocked
appear on the right side of the vertical line.

sideways
pull

sideways
pull

against
push

against
pull

against
against pull

push/pull

~ sideways
l i l pu,

against
push

against
push

against
push

against
pull

against
pull

Fig. 6. Situations where a subassembly (represented by the grey shape) can be removed (left of
the vertical line) or is blocked (right of the line).

It may also be the case that there are more than one loop going through the exter-
nal connection leading to other external connections of the subassembly. Each external
component connected by these other external connections may then be blocking the sub-
assembly. Therefore, the subassembly can only be removed in the direction of an exter-
nal connection when all force loops through the connection match a situation depicted
on the left of the vertical line in Fig. 6.

A subassembly is called a free subassembly when it can be removed. To see whether
a subassembly is free, an external connection has to be found that matches one of the
three cases described above. This can be formalized as follows:

41

free(a) ~ subassembly(a) A
3 c1: in-boundary(cl,a) A -~broken(cl) A

V l, c2: loops-through(l,cl) A loops-through(l, c2) A
in-boundary(c2,sa) A c1~c2 -+

broken(c2) V sideways(el) V sideways(c2) V
(against(d) A against(c2) A ((force(l, cl,push) A force(l, c2,pull)) V

(force(l, cl ,pull) A force(l,c2 ,push))))

In this definition we assumed that the predicate subassembly defines all subassem-
blies in a model (see also See. 4). The relation in-boundary is a systems theoretic rela-
tion that relates all connections in the system boundary of a subassembly, i.e. the exter-
nal connections, to a subassembly. The predicate broken holds for connections that were
broken earlier in the disassembly process.

Note that the above definition only takes into account blocking subassemblies that
are in direct contact with the subassembly. For situations where components that are not
in direct contact prevent subassemblies to be removed (or connections to be loosened),
such as closed covers or lids, the state concept has been introduced. This makes it possi-
ble to ensure for instance that the lid has been opened or that the cover has been removed
before subassemblies are removed from the product.

3 PROMOD: Performing Disassembly Analysis

It is now easy to give an algorithm that automatically generates the AND/OR tree of a
product. Given a product model, at any point in the disassembly process, disassembly
operations effectuate one of two changes in the model:

- connections can be loosened;
- free subassemblies can be removed.

In the algorithm, the disassembly operations are not considered themselves, but indi-
rectly through the modifications they cause in the model. This way the usability of the
disassembly models can be assessed without having to model the different types of phys-
ical disassembly operations. Then, a suitable algorithm that generates the disassembly
tree (in a depth-first way) can be found in Fig. 7.

The algorithm recursively invokes itself on a model m' that is a copy of the original
model m with a modification operation applied to it. In this way, the original model is
available to branch off the other alternatives for disassembly of model m.

PRoMoD is a prototype KBS that implements the product models for disassembly
as well as the AND/OR tree generation algorithm described above. In addition, it con-
tains a simple form of ecological cost-benefit analysis, as follows. It uses a list of prod-
uct components that have to be removed from the product for recycling or reuse. Each
loosening or removal operation applied to the model accounts for some given ecological
cost (e.g. 5 units for loosening a connection, 1 unit for removing a subassembly). The
ecological benefits depend on the degree to which the components that were marked as
components to be recycled or reused have been separated from the product. For sim-
plicity, the cost-benefit analysis does not calculate an ecological benefit, but instead a
penalty (e.g. 15 units) for each unwanted component that is still attached to one of the

42

algorithm disassemble m

do cost-benefit analysis

foreach connection c in m do
if c can be loosened then

m' = m

loosen c in m'

disassemble m'

endif

end
foreach subassembly a in m do

if a is free then

m' = m

remove a from the rest in m'

disassemble m'

endif
end

end

Fig. 7. Algorithm to Perform Disassembly Analysis.

components that should be removed. The total evaluation score of a situation in the dis-
assembly process is then defined as 1/(cost + penalty).

We realize that the presented disassembly algorithm and cost-benefit calculation are
too restricted for realistic disassembly analysis. The reason they are used is because they
give us a way to demonstrate the usability of the disassembly models, the construction
of ontologies and the practise of ontology-based application development.

sff:~l plate ~;~:~ ~:!~!~!~i~i~!~i~!;i~i;i~!;~!~!ii~i~iii~!iI
$craw2 element l l ~ block

i~ c51

separate(base, case)
c8

eA

Fig. 8. Disassembly model of a coffee machine.

43

We will now discuss an example indicating the usability and reasoning power of
the PROMOD system implementing the theory for product disassembly of this paper.
Fig. 8 shows a model of a coffee machine that has been analyzed by the system. Con-
nection c8 can only be loosened when the base has been separated from the case (i.e.
when both components are not part of a single subassembly). The component block has
been marked as the component to be removed from the product.

Situations considered for 'Coffee Machine'

sequence:

asys:

clumps:

rating:
sequence:

asys:

clumps:

rating:

((break c5) (remove screw2) (remove base)
(break c8) (remove screwl) (remove block))

((free case) (blocked plate) (separate screwl)
(free element) (separate base) (separate block)
(separate screw2))

((case plate element) (screwl) (ba~) (block)
(screw2))

14 0 14
((break c5) (remove screw2) (remove base)
(break c8) (remove screwl))

((free case) (blocked plate) (separate screwl)
(free element) (separate base) (free block)
(separate screw2))

((case plate element block) (screwl) (base)
(screw2))

13 75 88

[many sequences removed]

sequence:
asys:

clumps:
rating:
sequence:
asys:

clumps:
rating:

((break c5))
((free case plate screwl block) (blocked element)
(blocked base) (free screw2))

((case plate screwl element base block screw2))
5 150 155

NIL
((separate case plate screwl element base block

screw2))
((case plate screwl element base block screw2))

0 150 150

Fig. 9. Disassembly analysis result from the PROMOD system for the coffee machine.

Fig. 9 shows part of the results of the disassembly analysis by PRoMOD. For each
sequence of disassembly operations applied to the coffee machine it gives information
on the subassemblies and the state of the subassemblies, on the groups of components
that are separated, and on the ecological rating of the situation. The rating consists of

44

three numbers: the ecological cost of disassembly, the total component penalty and the
sum of these numbers.

4 An Ontology for Disassembly

Regarding aspects of physical systems, an extensive collection of ontologies is now
available, see (Top and Akkermans 1994; Borst, Akkermans, and Top 1997; Gruber
and Olsen 1994) and the KSE/Ontolingua library of ontologies. The PHYSSYS ontology
(Borst, Akkermans, and Top 1997), for example, formalizes aspects of physical systems,
including physical processes and related engineering mathematics, the latter by incorpo-
rating the EngMath ontology (Gruber and Olsen 1994). In order to construct large on-
tologies in a modular fashion, general abstract ontologies have been defined separately,
such as mereology, general topology and systems theory. To define specific physical sys-
tem aspects, these are imported and extended or specialized. A similar approach to en-
hance modularity and genericity in ontology design has been proposed in the context of
a medical ontology library by (Heijst, Schreiber, and Wielinga 1997).

The same design principles hold for the construction of an ontology for disassem-
bly. General topology defines generic properties regarding connectedness. The nature
of these connections is left open. For disassembly, it is straightforward to import this
general ontology, and extend it by writing axioms introducing the proposed four types
of connections. In the same vein, subassemblies as discussed in See. 2.4 can be for-
mally defined using concepts from the abstract ontology of systems theory that is part
of PHYSSYS:

subassembly(a) +-r subsystem-of(a, model) A
(in-boundary(c,a) --* -~enforced(c)) A
(V ol,o2: part-of(ol,a) A part-of(o2,sa) --r

connected(ol,o2)) A
-~3 ol,o2,c: part-of(ol,sa) A part.of(o2,sa) A

connects(c,o l ,o2) A -~enforced(c) .

Various abstract ontologies are reused here, including mereology (part-oJ), topology
(connects) and systems theory (subsystem-of, in.boundary). Also, the formal definition
given in Sec. 2.4 of a free subassembly reuses general systems theory. Thus, in the for-
mal definition of the disassembly viewpoint, existing abstract ontologies theory can be
reused, and modularly extended to enable reasoning about subassemblies and whether
or not they are free for removal in disassembly.

Fig. 10 shows how an ontology of product disassembly can be constructed from
small modules. On the left hand side can be seen that the ontologies of mereology, topol-
ogy and systems theory are reused in the defimtion of an ontology of disassembly mod-
els. This ontology includes an additional ontology of graph theory because a graph repre-
sentation of product components and enforced connections enables us to find a problem
solving method (find maximum connected subgraphs) that defines how to compute the
subassemblies in a product model.

Graph theory can also be used to define an ontology of state space. When the states
in state space are related to disassembly models and edges between states to disassem-

45

I me'eo=ogy I

I topology [(max. co..s~r.)
f

I I I I (ox..s==.)
\ / \ /

m°°'s I I s,=,sp=, I 1 °QMa,h I

t roMoD I

Fig. 10. Inclusion lattice of the application ontology of PROMOD. Boxes represent ontologies and
arrows indicate ontology inclusion. Rounded boxes are method ontologies.

bly operations that transform one disassembly model into another, we are able to define
disassembly sequences as paths through state space.

The specialization of state space in general to the state space of product disassembly
is defined by the PROMOD ontology that appears at the bottom of Fig. 10. This ontol-
ogy also includes the EngMath ontology of engineering mathematics to define the cost-
benefit function. The cost-benefit assigns a value to a path in state space and is used by
the exhaustive search method that finds an optimal path in state space. This method has
been has been implemented as the disassembly algorithm in Sec. 3.

5 ' R e l a t e d W o r k

Computational Mechanical Engineering. The problem to obtain the AND/OR graph
of a product has also been considered in computational (mechanical) engineering, and
several approaches are reported in the literature.

In the reversedfishbone approach (Ishii and Lee 1996), the designer has to come
up with the preferred way to disassemble the product him/herself. This is graphically
specified in a reversed fishbone diagram which can be considered as a sub-graph of the
AND/OR graph. The disadvantage of this approach is that when the design of the product
changes, possibly large parts of the diagram have to be changed. This makes this method
less suited for comparing alternative designs.

A method to obtain the AND/OR graph automatically is to generate it from a geomet-
ric model of the product. This is done in the degrees of freedom (Dof) approach (Khosla
and Mattikali 1989) where a 3D CAD drawing of the product is utilized. After a design
modification the AND/OR graph can automatically be recomputed, but the drawback
is that it needs extensive input information, which is not always available in the early
stages of product design.

The third approach uses a topological liaison diagram (Fazio and Whitney 1987;
Sturges Jr. and Kilani 1992), nodes denoting components and edges physical connec-
tions. The AND/OR graph is generated from this diagram plus additional relations spec-
ifying a partiat ordering over the breaking of connections. Our theory is related to this
approach. Its novel and distinguishing aspect is that by a clever choice of connection

46

types, it can capture geometric information otherwise only available in 3D geometric
models.

Ontological Engineering. In AI, much work has been done on geometric and spatial
reasoning, e.g. (Joskowicz and Sacks 1991; Faltings 1992), while (Cohn, Randell, and
Cui 1995) has considered related formal ontological aspects.

PRoMoD's connection types and force loops are abstractions of physical and ge-
ometrical properties of connections and product structures. Although they form a suffi-
cient basis for disassembly analysis, it would be interesting to study how they are related
to ontologies of geometric and spatial reasoning. This would give us more information
about the competence of the modelling technique and provides the knowledge of how
to generate PROMOD models from CAD drawings in cases when these are available.

At least two approaches to formalize geometry can be found in the literature. One
describes geometry in a mathematical way: mathematical equations define shapes, sur-
faces, lines and points in space. A system that uses a polygon representation of products
to reason about mechanical assembly is described in (Wilson and Latombe 1994). The
second approach extends Clarke's mereo-topology with relations to express congruence
of objects (being aligned), being enclosed by an object, overlapping the convex hull of
an object and so on (Borgo, Guarino, and Masolo 1996; Randell and Cohn 1992). Be-
cause these approaches avoid the introduction of points in space, the theories are called
'pointless' theories. A good example of the second approach to geometrical reasoning
can be found in (Randell, Cohn, and Cui 1992).

For PROMOD's geometric abstractions, rigidness and congruence are the key as-
pects. Congruence is one of the basic relations in pointless approaches, so these the-
ories are good candidates to formalize PRoMoD's abstractions. It is also possible to
define congruence in a mathematical way: for congruent objects it is possible to find a
straight line that crosses all objects. The rigidness of connections can also be expressed
in both approaches. In pointless theories they coincide with so called strong connections.
In mathematical approaches, connections can be formalized with mathematical relations
about the position of shapes, surfaces, lines and points. The distinction between rigid
and loose connections gives rise to two interpretations of these relations. For rigid con-
nections the relation has to be interpreted as a constraint that must hold, and for loose
connections it is just an observation about the position of the connected objects.

Both approaches seem to be suited for formalizing the physical and geometrical ab-
stractions used in PRoMoD. Pointless approaches are well suited to gain insight on the
actual meaning of the abstractions whereas mathematical approaches are closer to solid
model specifications and therefore better for linking PROMoD models to CAD draw-
ings.

6 Conc lus ion

In this paper, a new theory and modelling technique for disassembly of products has
been presented. It is based upon an ontology that introduces unconventional but simple
geometric and physical task-oriented abstractions in a topological context, by introduc-
ing connection types. Thus, advantages of several existing techniques for disassembly
analysis are combined.

47

We have indicated how the ontology for disassembly can be neatly embedded in
a broader ontology for physical systems, corroborating generic ontology construction
principles proposed in the AI literature.

The proposed theory of product models has been implemented in a working pro-
totype KBS. We have shown how the system is able to automatically generate the full
disassembly graph and to carry out a simplified ecological cost-benefit analysis. How to
provide a more realistic cost-benefit analysis will be investigated in the future.

References

Borgo, S., N. Guarino, and C. Masolo (1996). A pointless theory of space based
on strong connection and congruence. In Proceedings of Principles of Knowl-
edge Representation and Reasoning (KR96), Boston, Massachusetts, pp. 220-
229. Morgan Kaufmann.

Borst, W. N., J. M. Akkermans, and J. L. Top (1997). Engineering ontologies. Inter-
national Journal of Human-Computer Studies 46, 365-406. Special Issue on On-
tologies in KBS Development.

Clarke, B. L. (1981). A calculus of individuals based on 'connection'. Notre Dame
Journal of Formal Logic 22(3), 204-218.

Cohn, A. G., D. A. Randell, and Z. Cui (1995). Taxonomies of logically defined qual-
itative spatial relations. International Journal of Human-Computer Studies 43,
831-846.

Faltings, B. (1992). A symbolic approach to qualitative kinematics. Artificial Intelli-
gence 56, 139-170.

Fazio, T. L. D. and D. E. Whitney (1987). Simplified generation of all mechanical
assembly sequences. IEEE Journal of Robotics and Automation RA-3(6), 640-
658.

Fiksel, J. (1996). Design For Environment: Creating Eco-Efficient Products and Pro-
cesses. New York: McGraw-Hill, Inc.

Gruber, T. R. and G. R. Olsen (1994). An ontology for engineering mathematics. In
J. Doyle, P. Torasso, and E. Sandewall (Eds.), Proceedings Fourth International
Conference on Principles of Knowledge Representation and Reasoning, San Ma-
teo, CA, pp. 258-269. Morgan Kaufmann.

Heijst, G. V., A. T. Schreiber, and B. J. Wielinga (1997). Using explicit ontologies in
KBS development. International Journal of Human-Computer Studies 46, 183-
292. Special Issue on Ontologies in KBS Development.

Ishii, K. and B. H. Lee (1996, August). Reverse fishbone diagram: A tool in aid
of design for product retirement. In ASME Design for Manufacturability Con-
ference, Irvine, California. 96-DETC/DFM-1272, ASME DTC/CIE Proceedings
CD, ISBN 0-7918-1232-4.

Joskowicz, L. and E. Sacks (1991). Computational kinematics. Artificial Intelli-
gence 51,381-416.

Khosla, P. K. and R. Mattikali (1989). Determining the assembly sequence from a
3-D model. Journal of Mechanical Working Technology 20, 153-162.

48

Randell, D. A. and A. G. Cohn (I 992). A spatial logic based on regions and connec-
tions. In B. Nebel, C. Rich, and W. Swartout (Eds.),Proceedings of the thirdNa-
tional Conference on Principles of Knowledge Representation and Reasoning.,
Los Altos, pp. 165-176. Morgan Kaufmann.

Randell, D. A., A.G. Cohn, and Z. Cui (1992). Naive topology: Modeling the
force pump. In B. Faltings and P. Struss (Eds.), Recent Advances in Qualitative
Physics, pp. 177-192. Cambridge, Massachusetts: The MIT Press. ISBN 0-262-
06142-2.

Sturges Jr., R. H. and M. I. Kilani (1992, February). Towards an integrated design
for an assembly evaluation and reasoning system. Computer-Aided Design 24(2),
67-79.

Top, J. L. and J. M. Akkermans (1994, December). Tasks and ontologies in engineer-
ing modelling. International Journal of Human-Computer Studies 41(4), 585-
617.

Wilson, R. H. and J.-C. Latombe (1994). Geometric reasoning about mechanical as-
sembly. Artificial Intelligence 71, 371-396.

