
Problem Solving for Redesign*

Anita Pos t and Hans Akkermans t and Remco Straatman 2

t University of Twente (UT)
Department of Computer Science

P.O. Box 217
NL-7500 AE Enschede

The Netherlands
E-mail: {pos,akkerman}@cs.utwente.nl

University of Amsterdam (UvA)
Department of Social Science Informatics (SWI)

Roetersstraat 15
1081 WB Amsterdam

The Netherlands
E-mail: remco@swi.psy.uva.nl

Abstract. A knowledge-level analysis of complex tasks like diagnosis and de-
sign can give us a better understanding of these tasks in terms of the goals they
aim to achieve and the different ways to achieve these goals. In this paper we
present a knowledge-level analysis of redesign. Redesign is viewed as a family of
methods based on some common principles, and a number of dimensions along
which redesign problem solving methods can vary are distinguished. By examin-
ing the problem-solving behavior of a number of existing redesign systems and ap-
proaches, we came up with a collection of problem-solving methods for redesign
and developed a task-method structure for redesign.
In constructing a system for redesign a large number of knowledge-related choices
and decisions are made. In order to describe all relevant choices in redesign prob-
lem solving, we have to extend the current notion of possible relations between
tasks and methods in a PSM architecture. The realization of a task by a problem-
solving method, and the decomposition of a problem-solving method into sub-
tasks are the most common relations in a PSM architecture. However, we suggest
to extend these relations with the notions of task refinement and method refine-
ment. These notions represent intermediate decisions in a task-method structure,
in which the competence of a task or method is refined without immediately pay-
ing attention to its operationalization in terms of subtasks. Explicit representation
of this kind of intermediate decisions helps to make and represent decisions in a
more piecemeal fashion.

1 Introduction

The concept o f reusable problem-solving methods (PSMs) is present in many current
knowledge engineering frameworks, e.g. Generic Tasks (Chandrasekaran, 1988), Corn-

* This work has been funded by NWO/SION within project 612-322-316, "Evolutionary design
in knowledge-based systems" (the REVISE-project). Participants in the REVISE-project are:
the TWIST group at the University of Amsterdam, the AI department oAmsterdam and the
STEVIN group at the University

206

ponents of Expertise (Steels, 1990), Method-to-Task (Gennari et al., 1994), role-limiting
methods (McDermott, 1988), GTMD (O'Hara & Shadbolt, 1993) and COMMONKADS
(Wielinga et al., 1993). The interest in PSMs originates from the need to describe and
explicate generic aspects of the problem solving behavior of knowledge based systems.
One possible use of PSMs lies in comparing the problem solving behavior of different
knowledge based approaches and systems for the same or similar tasks.

In this paper we focus on comparing PSMs for redesign, and on identifying and rep-
resenting relevant choices in constructing and selecting PSMs for redesign tasks. As the
notion of redesign incorporates many different methods it is best characterized as a fam-
ily of problem-solving methods. We have made a knowledge-level analysis of redesign,
and come up with a collection of problem-solving methods for this task. This collection
was obtained in a bottom-up manner by examining the problem solving behavior of ex-
isting redesign systems and approaches, most notably those developed in the REVISE-
project. Within this project the redesign of technical systems (Eldonk et al., 1996), sim-
ulation models (Pos et aL, 1997), compositional architectures (Brazier et aL, 1996b) and
control knowledge in knowledge based systems (Straatman, 1995) is studied.

The number of knowledge based decisions made during the design of a redesign sys-
tem is large and diverse. In order to describe all relevant choices and decisions in a task-
method structure, we need to extend the current notion of possible relations between
tasks and methods. The general notion of a prblem-solving method as a direct link be-
tween a task goal and the decomposition of this task into subtasks, is not in itself suffi-
cient to describe all the relevant choices and decisions. The notions of task refinement
and method refinement are introduced to represent intermediate decisions in construct-
ing and selecting PSMs. In these intermediate decisions, the competence of a task or
method is refined without immediate attention being paid to the operationalization of
this task or method. This corresponds to changing the exact nature of the problem with
the aim of making it easier to solve. Explicit representation of these types of intermediate
decisions help to represent decisions in a more piecemeal fashion.

The structure of the paper is as follows: In section 2, we present an extended archi-
tecture of a task-method structure, based on the additional notions of task refinement
and method refinement. In section 3 we present our view on redesign, and distinguish
a number of dimensions along which redesign approaches can differ. We also present
some excerpts from a collection of problem-solving methods for redesign, and use these
as examples to illustrate the additional refinement relations proposed and their role in de-
scribing and comparing tasks and problem-solving methods in a task-method structure.
Section 4 concludes the paper, and points out some implications for knowledge engi-
neering.

2 Modeling framework

A general view on tasks, methods and their mutual relations is the following: A task is
characterized by a goal it can achieve. A task can potentially be realized by a number of
problem-solving methods (PSMs). A problem-solving method describes a way to solve
a task: it decomposes a task into subtasks, each associated with a subgoal, and/or into
primitive inferences, that directly achieve goals. Recently, focus has shifted from the

207

description of reasoning strategies per se to the description of assumptions underlying
these reasoning strategies (Akkermans et al., 1994; Benjamins et al., 1996). The idea is
that PSMs provide solutions to tasks by making assumptions about the precise definition
of their functionality, and about the available domain knowledge. With this idea in mind,

•=•
I realized
I by -

Operational
.o -~ Specification

O
(subtasks + control)

Teleological
Assumptions

Ontological
ssumptions

Fig. 1. The architecture of a PSM.

satisfied
by

o

o

e~
¢/o

(Benjamins et al., 1996) states that a PSM consists of three subparts (presented in figure
1):

- its functional specification. This is a declarative description of the input/output be-
havior of the PSM.

- its operational specification. This is an account of how to realize that behavior. The
operational specification of a PSM decomposes a task into subtasks and/or primitive
inferences, and defines an ordering over these operators.

- its assumptions. Problem-solving methods make assumptions on the precise defi-
nition of their functionality (teleological assumptions) and on the availability and
properties of domain knowledge (ontological assumptions). Teleological assump-
tions are introduced in matching a task goal to the functional specification of a PSM
if the functional specification of a PSM is more restricted than the task goal it is
meant to achieve. Ontological assumptions are introduced when realizing the func-
tional specification of a PSM by its operational specification, since operationaliza-
tion often depends on the availability and properties of domain knowledge.

We tried to use this framework to establish a task-method structure for problem solv-
ing behavior of different redesign systems and approaches, similar to the task-method
structure for diagnosis presented in (Benjamins, 1993). However, although the PSM ar-
chitecture in (Benjamins et al., 1996) is rich, it does not adequately cover all (intermedi-
ate) types of design decisions we encountered. The current framework provides a limited
number of relations between tasks and methods: a task goals can be matchedto the func-
tional specification of a problem-solving method, and a problem-solving method can be

208

realized by an operational specification which decomposes the functional specification
in a number of subtasks. While trying to construct a task-method structure for redesign,
we encountered two types of intermediate decisions that can not easily be represented
in this framework; we call them task refinement and method refinement, respectively.

ined-by•, teleological ref assumptions

realized-b I
[Operadon~

specification I

E

Fig. 2. An extended architecture for PSMs.

- Task refinement refines a task goal G into a more specific task goal G' but without
directly making explicit how the task should be solved. Refinement of a task special-
izes a task goal into a weaker task goal by making additional teleological assump-
tions about the precise definition of the tasks functionality.

- Method refinement refines the functional specification F of a PSM into a more re-
fined functional specification F' without making explicit how exactly this functional
representation should be operafionalized in terms of (control over) subtasks and/or
primitive inferences. Competence refinement of a problem-solving method may in-
troduce both additional teleological assumptions on the precise definition of the func-
tional specification of a PSM as well as additional ontological assumptions on ad-
ditional knowledge structures that should be available in the domain knowledge.

209

The competence description (Akkermans et al., 1994) of a method or goal describes
its problem space and requirements on the solution it produces. Under this definition,
both decisions described above can be viewed as competence refinements, since they
refine the functional specification of a task or method without directly making explicit
how this competence could be achieved. This allows us to describe families of strongly
related problem-solving methods, which can now be described purely in terms of their
competence. Both forms of refinement are only to be used as intermediate steps in a task-
method structure: the ultimate goal of constructing a task-method structure is still to re-
late a task to be solved to an operational description of how this task should be solved.
However, the recognition of these two additional relations allow to better distinguish
and separate different reasoning steps in the construction of a task-method structure.
Figure 2 shows the additional refinement relations, and their place in the PSM archi-
tecture. Of course, the process is recursive, i.e. goals of subtasks of a problem-solving
method can again either be refined to weaker goals or directly operationalized by an op-
erational specification etc. In the next section we will illustrate the role of our additional
refinement relations in describing and comparing tasks and problem-solving methods in
a task-method structure by presenting some excerpts from a collection of PSMs for the
task of redesign.

3 Redesign

Redesign is an inherent part of most design processes, but can also be seen as a family
of design methods in itself. In contrast to design-from-scratch, redesign starts out with
an existing design description and modifies this until it fits the current needs as good
as possible. In order to perform redesign it is essential that some form of knowledge
is available that allows the adaptation of existing designs. This knowledge is based on
the following two principles: 1) minimally change the design, and 2) maximally exploit
existing properties of the domain. An underlying assumption of the task of redesign is
that the existing design description is "close enough" to fulfill the needs by only limited
adaptations. However, what is considered close enough in a specific case depends on the
nature of the adaptation knowledge, and on the way different requirements interact.

Redesign can play two different roles in the complete design process: First, redesign
can be seen as a subphase of the design process. Here, design is viewed as an iterative
process that uses intermediate results as a means of getting a final design description
which fulfills the requirements. The task of redesign in this context produces a new tem-
porary design description which is (hopefully) closer to the specification than the former
design description. This view is the basis for the Propose-Critique-Modify family of de-
sign methods discussed in (Chandrasekaran, 1990). Secondly, redesign can be consid-
ered in the context of reuse. Here, redesign starts with a previously constructed design
description, and a new set of requirements. The previously constructed design descrip-
tion must now be modified to fulfill the new set of requirements. This view is often con-
sidered as part of approaches such as case-based design (see e.g. (Kolodner, 1993; Maher
et al., 1995)), when the already retrieved case is adapted to suit the new requirements.
Although there are very subtle differences between these two views, in both cases the
important issue is to bridge the gap between a set of requirements and a design descrip-

210

tion. Therefore, both Iterative Redesign and Redesign for Reuse can be captured by a
single spectrum of problem-solving methods for redesign.

REVISE redesign method

,,

I critique/modify [

Fig. 3. A partial task-method structure for the redesign task. Rectangles represent methods and
ellipses represent tasks. Dashed lines indicate that methods are alternatives for achieving the task
goal. Solid lines decompose a method into its subtasks.

In the work described here, redesign is conceived as consisting of two subtasks: re-
quirement management and management of the design description. The latter is further
decomposed into assessment and repair. This decomposition of the redesign task (which
we will in the remainder of this paper refer to as the "REVISE method") is motivated
by work in the REVISE-project. Figure 3 presents a partial task-method structure for the
REVISE method.

- Requirement management. This subtask is responsible for specification, manage-
ment, refinement and adaptation of requirements. Some examples of PSMs for this
task are discussed in section 3.1.

- Assessment. This subtask is responsible for determining the differences between the
(properties of the) current design description and the requirements. These differ-
ences drive the repair subtask.

- Repair. Within this subtask, the design description is adapted such that it will bet-
ter fit the requirements. Determining which part of the design description will be
adapted (critique), and how it will be adapted (modify) are often tightly coupled
subtasks in this task. Section 3.2 discusses some examples of PSMs for the subtask
of design modification.

The main difference between the REVISE model and other models for (re)design,
like Propose-Critique-Modify (Chandrasekaran, 1990), lies in the inclusion of the task
of requirement management in the redesign process. In our point of view, explicit man-
agement of requirements is essential in non-routine redesign: addition, retraction and

211

modification of the original requirements often forms a major part of any non-routine
redesign task. Examples of such non-routine redesign tasks can be found in systems for
redesign of compositional architectures (Brazier et aL, 1996b), simulation models (Pos
& Akkermans, 1996; Pos et aL, 1997) and software specifications (Funk & Robertson,
1994).

Many systems that solve redesign-like problems have been described in literature
(e.g. (Fischer et aL, 1987; Marcus et al., 1987; Daube & Hayes-Roth, 1989; Goel, 1991;
Smyth & Keane, 1996; Brazier et aL, 1996a)), but when one takes a closer look at the
different variants of the redesign task, subtle differences exist that have an impact on
how the task can be performed and what kinds of knowledge are involved.

A first source of variation in redesign is the design description. There are several as-
pects of the design description which are important in the context of redesign. The first
of these is the fixedness of the structure of the design description; at one end of the spec-
trum, the structure of the design description can be completely fixed during redesign, and
only the values assigned to parameters can be altered. This leads to parametric redesign.
On the other end of the spectrum we have situations where changes to the structure of
the design description are not limited in any way. Inbetween these extremes, there are
cases where a skeleton structure is considered to be fixed but where the specific structure
still can be filled in. Another dimension concerning the design description is the nature
of the information presented in the design description. At one end of this spectrum the
design description can purely describe the current status of the design, while at the other
end the design description includes a complete plan of design steps resulting in the cur-
rent design. The latter results in a form of redesign called derivational analogy (Mostow,
1989), while the former is the subject of more standard redesign approaches which di-
rectly modify the current design description (e.g. KRITIK (Goel, 199t) and 007 (Pos
et al., 1997)).

The requirements put on the design description provide a second source of varia-
tion in redesign. Again, there are several dimensions along which the requirements can
be classified. The first of these is the operationality of requirements. Requirements are
operational if their truth can be automatically derived from the design description by
some inference method. The question to be considered is whether it is sufficient in an
application domain to express needs and desires with operational requirements only, or
whether there is a need to express non-operational requirements as well? The latter situ-
ation requires more extensive support for requirements management. Software design is
a typical example in which the ability to express non-operational requirements is impor-
tant in supporting the user in requirement specification. Another dimension with respect
to the requirements posed on a design description is their (local or global) nature. Local
requirements are applicable to a single component or parameter, while global require-
ments specify properties of the complete design. An example of a global requirement is
the maximum weight of a device; this weight can not be attributed to a single component
but is a'function of the combined properties of all the components in the device.

Each redesign process requires some form of knowledge on which adaptations are
possible/suitable/useful etc. The nature of the adaptation knowledge is the third source
of variation in redesign. Again, there are several dimensions along which this adapta-
tion knowledge can be characterized. The first of these is the knowledge intensity of

212

the adaptation knowledge, ranging from purely search based to purely knowledge based
approaches. A second dimension is the generality of the adaptation knowledge: how
widely applicable is the adaptation knowledge. Applicatio-specific fixes are at one end
of this spectrum, while very general strategies like 'divide-and-conquer' are located at
the opposite end.

requirements]design description adaptation knowledge
operational/ structure search based/
non-operational fixed/free tan based
local/ derivation/ specific/
global design generic

Table 1. Dimensions of redesign problems

Table 1 summarizes the dimensions along which redesign problems can differ. A
space of redesign problems can be constructed by taking the Cartesian product of the
values on each of these dimensions to form a multidimensional problem space for re-
design problems. Most of the dimensions mentioned here have been described in the
context of design problems other than redesign (Wielinga & Schreiber, 1997; Bernaras,
1994). This is a result of the earlier mentioned position of redesign in the spectrum of
methods for design: redesign is both a part of many other design methods, like case-
based design, and an umbrella for many different techniques, like parametric (re)design
and configuration (re)design.

3.1 Requirement management

The subtask of requirement management is responsible for specification, management,
refinement and adaptation of requirements. This task has as its input the current model,
and as its output it produces an adequate set of requirements, suitable for assessment
of the design description. Requirement management as a separate task is based on the
observation that in general a design problem is often initiated by a statement of needs
and desires (Bernaras, 1994). These, sometimes quite vague, needs and desires are to
be interpreted and operationalized into a set of requirements suitable for automated as-
sessment. This corresponds to the task of requirements engineering in software design
(Wieringa, 1996). Figure 4 presents a partial task-method structure for the requirement
management task. We identified two methods for this task: ask-user-operational-requirements
or semi-automated-requirement-management. In many redesign systems, the task of re-
quirements specification is put completely in the hands of the user, and no automated
support is provided. This corresponds to the ask-user-operational-requirements PSM.
On the other hand, a small number of redesign systems (e.g. (Brazier et al., 1996b; Pos
et al., 1997; Reubenstein & Waters, 1991)) explicitly incorporate some form of semi-
automated requirement management to ensure that the resulting set of requirements is
adequate for further processing in the assessment task.

213

semi-automated] ask-user
requirements operational
management requirements

~ ~.,.~sistency~j ~O.~_ration~it~J

Fig. 4. A partial task-method structure for the requirement management task. Rectangles repre-
sent methods and ellipses represent tasks. Dashed lines indicate that methods are alternatives for
achieving the task goal. Solid lines decompose a method into its subtasks. Dotted lines indicate
competence refinement of tasks or methods. Not all methods are decomposed into subtasks and
primitive inferences.

A necessary ontological assumption for including any form of semi-automated re-
quirement specification in a (re)design system is that knowledge on how requirements
relate to each other is available in the application domain. The extent and nature of this
knowledge determines which form(s) of requirement management are feasible. Require-
ment management is primarily useful when the set of possible requirements to be posed
to the (re)design system is potentially large, when the number of requirements to be si-
multaneously satisfied may become large or when the need for expressing non-operational
requirements arises in a (re)design system due to the complexity of the domain involved.
In cases where the set of possible requirements is small and requirements are not appar-
ently interacting, requirement management is usually not necessary.

The PSM 'semi-automated-requirements-management' decomposes the task of re-
quirement management in three subtasks: propose-requirements, assess-requirements and
repair-requirements. This decomposition corresponds to the family of methods Chan-
drasekaran (Chandrasekaran, 1990) calls Propose-Critique-Modify. For the current ex-
ample, we will focus on the assess-requirements subtask in requirement management.

Requirement assessment The assess-requirements task takes as input a set of require-
ments and produces a datum DA that states whether the requirements are adequate or
not.

214

task name: requirement assessment
goal: KNOWN(ADEQUATE(R)) V KNOWN(INADEQUATE(R))
input role: R: set of requirements
output role: DA: KNOWN(ADEQUATE(R)) VDA: KNOWN(INADEQUATE(R))
By carefully looking at requirement management in different (re)design systems we

distinguish three different competence refinements of this requirement-assessment task
to more specialized tasks. Each of these refinements requires different teleological as-
sumptions, providing different restrictions on the goal of the requirement assessment
task: KNOWN(ADEQUATE(R)) V KNOWN(INADEQUATE(R)). The input and output roles
stay the same: in each refinement the task takes as input a set of requirements R and de-
livers as output a statement on some aspect of the adequacy or inadequacy of R.

Assess completeness A possible way in which the competence of the assess requirement
tasks can be refined is to refine the notion o f ' adequacy' to the more specialized notion
of 'completeness'. The goal of the thus refined assess completeness task then becomes:
KNOWN(COMPLETE(R)) V KNOWN(INCOMPLETE(R)). This is an example of the in-
troduction of additional teleological assumptions: the output of the assess requirements
task is restricted from a statement about the adequacy of the set of requirements to a
more specialized statement about the completeness of the set of requirements.

The completeness of a set of requirements can only be assessed with respect to a spe-
cific problem or a specific set of problems. Problem-solving methods for assessing in-
completeness of a requirement management in general use problem-specific knowledge
to decide whether a requirement management is complete with respect to the problem(s)
posed. This information can e.g. be represented the form of common forms (cliches) for
different problems (Reubenstein & Waters, 1991; Pus et a l., 1997), in the form of cases
(Maher & Balacandran, 1994) or in the form of a predefined list of requirements to be
specified (Brazier et aL, 1996c). A necessary ontological assumption for each of these
PSMs is that knowledge on when a set of requirements is supposed to be complete is
present in the domain knowledge.

Other possible refinements of the requirement assessment task are checking whether
the set of requirements is internally consistent (assess consistency), or checking whether
each requirement is fully operationalized (assess operationality), i.e. can automatically
be inferred from the design description by some inference procedure. This does not mean
that these refinements are mutually exclusive: an actual redesign system can include one
or more refinements.

All three tasks refinements are pure competence refinements of the original task goal
'assess requirements': they do not make any claims on how the task goal should be oper-
ationalized in terms of subtasks, but only on the way the task goal should be further spec-
ified. This allows us to view the task 'requirement assessment' as an abstract description
for a family of related tasks, each of which tests a different aspect of the 'adequacy' of a
set of requirements. Our purpose in constructing the notion of task refinements has been
to better distinguish different steps, corresponding to different design decisions, in the
construction and classification of problem-solving methods. The next step is to either
refine the current task further to an even more specialized task, or to match sufficiently
refined task goals to the functional description of (a family of) PSMs which might be
able to achieve the goal of the refined task.

215

3.2 Design modification

The task of design modification modifies part of the current design description to solve
one or more discrepancies between the set of requirements and the current design de-
scription. Figure 5 presents a partial task decomposition of this task. This task has as in-
put (a part of) the design description and delivers as output a modified version of this part
that is hopefully more suitable in the new situation. Three general families of problem-
solving methods for this task are substitution, transformation and generation (Maher
et al., 1995). Substitution methods substitute a part of the old design description with a
new part more suitable for the new situation. Transformation methods are used to trans-
form an old solution into one that will (hopefully) work in the new situation. Generative
methods re-enact (part of) the reasoning trace to modify the design description. FIRST
(Daube & Hayes-Roth, 1989), a case-based system for redesign of mechanical systems,
and COBRA (Finn etal., 1992), a case-based system for redesign of heat-transfer mod-
els, provide examples of the latter approach. Both systems retrieve 'redesign plans' from
a case-base and transfer these plans to the new problem at hand.

f~- 'modify-~. ,h

[direct 1 substitutionlby applicaiion ~ ~
substitution search I specific I

~ l r e i n s t a n t i a t e I ~ specialize~ ~ ~ " "

Fig. 5. A partial task decomposition of the modify-design-description task.

Several dimensions of redesign (Table 1) play a role as ontological assumptions in
this choice between alternative (families of) PSMs: whether the structure of the design is
supposed to be fixed, and whether the reasoning trace or the end product of design is used
for redesign. Generative methods make use of a reasoning trace, while substitution and
transformation methods require only the end product of design in the form of a design
description. Substitution and transformation methods mainly differ in their assumptions
on system structure: substitution methods assume that the system structure is fixed, while
transformation methods assume that the structure of the design is adaptable.

Substitution methods can be further specialized in direct substitution methods and
substitution by search. This distinction is based on the dimension of redesign concerning
the plan based versus search based nature of adaptation knowledge. This dimension de-
fines ontological assumptions on the type of additional knowledge necessary to make the
PSMs work: substitution by search requires some sort of database in which substitution

216

elements can be found, while direct substitution methods require procedural knowledge
on how to decide on a new value for a part of the old design description. Search-based
substitution methods can be further specialized by considering the additional knowledge
necessary for searching: query memory (Hinfichs & Kolodner, 1991) requires informa-
tion on what to look for, in the form of a partial description of the item searched for.
Local search, which can e.g. be found in PLEXUS (Alterman, 1986), requires instruc-
tions on where to search for alternatives. Specialized search, which can e.g. be found
in the SWALE system (Schank & Leake, 1989), requires instructions on how to find an
alternative. Case based substitution, which can e.g. be found in the JULIA system (Hin-
richs & Kolodner, 1991), requires instructions on how to find a similar case which might
suggest an appropriate alternative.

Transformation methods can be further specialized by considering the general or
specific nature of the modification knowledge used for transformation: generic strate-
gies like'divide-and-conquer', which can e.g. be found in JULIA (Hinrichs & Kolodner,
1991), form one end of this spectrum, while application-specific heuristics, which can
e.g. be found in the VT-system for elevator design (Marcus et al., 1987), form the other
end of the spectrum. Systems like KRITIK (Goel, 1991) and 007 (Pos et al., 1997) fall
somewhere in between: the repair plans used in these systems are general enough to be
applied to many different problems, but not as generic as general strategies like 'divide
and conquer'.

All the method specializations discussed above are competence refinements: they
only make claims on the functional specification of (a family of) problem-solving meth-
ods, and not on how these PSMs should be operationalized in terms of subtasks and con-
trol.Method refinements represent intermediate decisions in the classification of PSMs.
Our purpose in constructing these intermediate relations has been to better distinguish
different design decisions as separate steps in the classification of PSMs, based on the di-
mension underlying each design decision. They allow us to describe a family of related
PSMs by means of an abstract functional specification common to all its members. In
the original PSM framework, these intermediate, seperate design decisions would either
have be compressed into direct relations between the task and the bottom-level PSMs
(e.g., one way to satisfy the task 'modify design description' is to directly use the bottom-
level PSM 'substitution by local search'), or an intermediate operationalization would
have to be constructed for each family of PSMs in the refinement decomposition.

The task decomposition depicted in Figure 5 covers the same set of methods as the
classification of adaptation methods and strategies in case-based reasoning presented in
(Kolodner, 1993). This lends further support to our claim that redesign methods form a
part of several more general design paradigms, of which case-based reasoning is one.

4 Conclusions & Related Work

Redesign is an inherent part of most design processes, but can also be seen as a family
of design methods in itself. In the latter point of view, redesign is a family of problem-
solving methods for which two questions need to be answered:"what is common to re-
design?" and "which dimensions are involved in characterizing redesign?". The family
of methods called redesign can be characterized by a number of common principles: re-

217

design starts with an existing design description, and it requires some form of knowledge
that allows the adaptation of designs. This knowledge is based on two underlying prin-
ciples: (1) minimizing the changes being made to the design description and (2) maxi-
mizing the exploit of known properties of the design description. These characteristics
can be used to differentiate this family of methods from other design methods. In order
to compare different (families of) problem-solving methods for the same task we dis-
tinguished a number of dimensions along which redesign methods can differ: the nature
of the design description, the nature of the requirements and the nature of the adapta-
tion knowledge are the three main sources of variation in the family of problem-solving
methods called redesign.

We also presented a general model of redesign developed in the REVISE-project.
The main tasks in this general model are requirement management, artifact assessment
and artifact repair. The task of requirement management has not often been modeled
in other (re)design models, but is in our view essential in non-routine (re)design. Re-
quirement management in design corresponds to the task of requirements engineering
in software design (Wieringa, 1996). Each of these redesign subtasks can be achieved
by one or more (families of) PSMs. In this paper we selected two subtasks, requirement
management and artifact modification, and described task-structures for these subtasks
in somewhat more detail. For the other redesign subtasks similar task-structures have
been developed.

In developing a knowledge based system for a redesign task a large number of choices
and decisions are made. In order to express all these decisions as separate reasoning steps
in a task-method structure, the current notion of possible relations between tasks and
methods in a PSM architecture needs to be extended. Notions of task refinement and
method refinement are introduced to represent intermediate decisions in a task-method
structure, in which the competence of (a family of related) tasks or methods is refined
without directly paying attention to the operationalization in terms of subtasks and con-
trol. Explicit representation of this kind of abstract, intermediate reasoning steps helps
to make and represent decisions in a task-method structure in a more piecemeal fashion.

The characterization of tasks and methods for redesign presented in this paper is in-
formal. We think that this type of characterization is useful in the early stages of KBS
design, where problem-solving methods are constructed and selected to construct the
skeleton design model for a knowledge based system. In this early stage of KBS design,
common sense descriptions of problem-solving methods and their underlying knowl-
edge requirements (in terms of teleological and ontological assumptions made by each
problem-solving method) will often be used in advance of any formal work. In a later
stage, adapters as proposed in (Fensel, 1997), could be used to implement and formalize
the additional refinement relations proposed here in an informal context.

An alternative approach to specifying and selecting PSMs is presented in (ten Teije
et al., 1996). Here, a family of PSMs for diagnosis tasks is represented by a skeletal
functional description, with a number of subfunctions. Values for these are chosen from
a fixed set to obtain a specific diagnostic function. Parametric design can then be used to
construct a specific method functionality. However to construct such a skeleton and ap-
propiate values requires a well-understood formalisation of different methods and their
properties, which does not yet exist for redesign methods.

218

The extended PSM framework described in this paper has been used to describe rel-
evant choices in selecting problem-solving methods for a specific redesign system in the
domain of computational engineering models, called 007 (Pos et al., 1997). In the near
future, we plan to use this framework to describe other redesign systems, starting with
the redesign systems which are at the moment being developed by the other participants
in the REVISE-project. These systems focus on redesign of compositional architectures
(Brazier et al., 1996b) and redesign of control knowledge in knowledge based systems
(Straatman, 1995), respectively.

Acknowledgments

This paper has been significantly influenced by many discussions in the REVISE-project.
We would like to thank all other REVISE participants for their input. We would also like
to thank Tim Menzies for his extensive comments on this paper.

References

AKKERMANS, H., WIELINGA, B., & SCHREIBER, G. (1994). Steps in constructing
problem solving methods. In Gaines, B. R. & Musen, M., editors, Proceedings of
the 8th International Knowledge Acquisition Workshop (KA W'94), volume 2, pages
29.1-29.21, Banff, Alberta. University of Calgary, SRDG Publications.

ALTERMAN, R. (1986). An adaptive planner. In Kehler, T., Rosenschein, S., Filman,
R., & Patel-Schneider, P. F., editors, Proceedings of the 5th National Conference on
Artificial Intelligence (AAAI-86), pages 65-69, Philadelphia, PA. Morgan Kaufman
Publishers, Inc.

BENJAMINS, V. R. (1993). Problem solving methods for diagnosis. Ph.D. Thesis,
University of Amsterdam.

BENJAMINS, V. R., FENSEL, D., & STRAATMAN, R. (1996). Assumptions of
problem-solving methods and their role in knowledge engineering. In Wahlster,
W., editor, Proceedings of the 12th European Conference on Artificial Intelligence
(ECAI-96), pages 408-412, Budapest, Hungary. John Wiley and Sons.

BERNARAS, A. (1994). Problem-oriented and task-oriented models of design in the
COMMONKADS framework. In Gero, J. S. & Sudweeks, F., editors, Artificial In-
telligence in Design '94. Dordrecht, the Netherlands, Kluwer Academic Publishers.

BRAZIER, F. i . T., TREUR, J., & WIJNGAARDS, N. J. E. (1996a). Interaction with
experts: the role of a shared task model. In Wahlster, W., editor, Proceedings of the
12th European Conference on Artificial Intelligence (ECAI-96), pages 241-245,
Budapest, Hungary. Wiley and Sons.

BRAZIER, F. M. T., VAN LANGEN, P. H. G., TREUR, J., & WIJNGAARDS, N. J. E.
(1996b). Redesign and reuse in compositional knowledge-based systems. Knowl-
edge Based Systems, Special Issue on Models and Techniques for Reuse of Designs,
9(2): 105-119.

BRAZIER, F. M. T., VAN LANGEN, P. H. G., TREUR, J., WIJNGAARDS, N. J. E., &
WILLEMS, M. (1996c). Modelling an elevator design task in DESIRE: the VT
example. International Journal of Human-Computer Studies, 46:469-520.

219

CHANDRASEKARAN, B. (1988). Generic tasks as building blocks for knowledge-based
systems: the diagnosis and routine design examples. The Knowledge Engineering
Review, 3:183-210.

CHANDRASEKARAN, B. (1990). Design problem solving: a task analysis. AI Maga-
zine, 11(4):59-71.

DAUBE, F. & HAYES-ROTH, B. (1989). A case-based mechanical redesign system. In
Shridharan, N. S., editor, Proceedings of the 11 th International Joint Conference on
ArU'ficialIntelligence (IJCAI-89), Detroit, Michigan. Morgan Kaufman Publishers,
Inc.

ELDONK, S. J. M., ALBERTS, L., BAKKER, R., F.DIKKER, • WOGNUM, P. (1996).
Redesign of technical systems. Knowledge-Based Systems, Special Issue on Mod-
els and Techniques for Reuse of Designs, 9(2): 93-104.

FENSEL, D. (1997). The tower-of-adapters method for developing and reusing
problem-solving methods. In Proceedings of the European Knowledge Acquisition
Workshop (EKAW-97). Springer-Verlag. Lecture Notes in Artificial Intelligence
(LNAI).

FINN, D. P., GRIMSON, J. B., & HARTY, N. M. (1992). An intelligent modelling as-
sistant for preliminary analysis in design. In Gero, J., editor, Artificial intelligence
in Design (AID'92), pages 579-596. Dordrecht, Kluwer Academic Publishers.

FISCHER, G., LEMKE, A. C., & RATHKE, C. (1987). From design to redesign. In
Proceedings of the 9th International Conference on Software Engineering, pages
369-376, Washington, D.C. IEEE Computer Society Press.

FUNK, P. J. • ROBERTSON, D, (1994). Case-based support for the design of dynamic
system requirements. In Proceedings of the 2nd European Workshop on Advances
in Case-Based Reasoning (EWCBR-94), pages 211-225, Chantilly, France.

GENNARI, J., TU, S., ROSENFLUH, T., & MUSEN, M. (1994). Mapping domains to
methods in support of reuse. International Journal of Human-Computer Studies,
41:399-424.

GOEL, A. K. (1991). A model-based approach to case adaptation. In Proceedings of
the 13th Annual Conference of the Cognitive Science Society (CogSci'91), pages
143-148, Chicago, Illinois.

HINRICHS, T. & KOLODNER, J. (1991). The roles of adaptation in case-based design.
In Dean, T. & McKeown, K., editors, Proceedings of the 9th National Conference
on Artificial Intelligence (AAAI-91), pages 28-33. AAAI Press / The MIT Press.

KOLODNER, J. (1993). Case-Based Reasoning. Morgan Kaufman Publishers, Inc.
MAHER, M. & BALACANDRAN, B. (1994). Flexible retrieval strategies for case-based

design. In Gero, J. & Sudweeks, E, editors, Artificial Intelligence in Design '94.
Dordrecht, Kluwer Academic Publishers.

MAHER, M. L., BALACHANDRAN, M. B., & ZHANG, D. M. (1995). Case-basedrea-
soning in design. Hove, UK, Lawrence Erlbaum Associates.

MARCUS, S., STOUT, J., & MCDERMOTT, J. (1987). VT: an expert elevator designer
that uses knowledge-based backtracking. AI Magazine, 8(4):39-58.

MCDERMOTT, J. (1988). Preliminary steps toward a taxonomy of problem-solving
methods. In Marcus, S., editor, Automating Knowledge Acquisition for Expert Sys-
tems, pages 225-255. Boston, Kluwer.

220

MOSTOW, J. (1989). Design by derivational analogy: Issues in the automated replay of
design plans. Artificial In~telligence, 40:119-184.

O'HARA, K. & SHADBOLT, N. (1993). Locating generic tasks. Knowledge Acquisi-
tion, 5:449-481.

Pos, A. & AKKERMANS, J. M. (1996). 007: A system for automated model revision.
In Javar, A., Lehmann, A., & Molnar, I., editors, Proceedings of the lOth European
Simulation Multiconference (ESM'96), pages 50-54, Budapest, Hungary. SCS.

POS, A., AKKERMANS, J. M., & TOP, J. L. (1997). Automated model revision. IEEE
Expert. In Press.

REUBENSTEIN, H. B. & WATERS, R. C. (1991). The requirements apprentice: Au-
tomated assistance for requirements acquisition. IEEE Transactions on Software
Engineering, 17(3):226-240.

SCHANK, R. C. & LEAKE, D. B. (1989). Creativity and learning in a case-based ex-
plainer. Artificial Intelligence, 40:353-385.

S MYTH, B. & KEANE, M. T. (1996). Using adaptation knowledge to retrieve and adapt
design cases. Knowledge-based Systems, Special Issue on Models and Techniques
for Reuse of Designs, 9(2): 127-136.

STEELS, L. (1990). Components of expertise. A/Magazine, 11 (2):28-49.
STRAATMAN, R. (1995). Learning control knowledge in models of expertise. In

Fensel, D., editor, Proceedings of the ECML-95 Workshop on Knowledge Level
Modeling and Machnine Learning, pages 1.2.1-I.2.13, Heraklion, Greece.

TEN TEIJE, A., VAN HARMELEN, F., SCHREIBER, A. T., & WIELINGA, B. J. (1996).
Construction of problem-solving methods as parametric design. In Gaines, B. R.
& Musen, M. A., editors, Proceedings of the lOth BanffKnowledge Acquisition
for Knowledge-Based Systems Workshop, volume 1, pages 12.1-12.21, Alberta,
Canada. SRDG Publications, University of Calgary. track: Shareable and reusable
problem-solving methods.

WlELIN6A, B. J. & S CHREIBER, A. T. (1997). Configuration-design problem solving.
IEEE Expert (in press).

WIELINGA, B. J., VELDE, W. V. D., SCHREIBER, A. T., & AKKERMANS, J. M.
(1993). Towards a unification of knowledge modeling approaches. In David, J. M.,
Krivine, J. P., & Simmons, R., editors, Second-generation expert systems, chap-
ter 14, pages 299-335. Berlin, Springer-Verlag.

WIERINGA, R. J. (1996). Requirements Engineering: Frameworks for Understanding.
Chicester, England, John Wiley and Sons.

