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Abstract. A knowledge-level analysis of complex tasks like diagnosis and de- 
sign can give us a better understanding of these tasks in terms of the goals they 
aim to achieve and the different ways to achieve these goals. In this paper we 
present a knowledge-level analysis of redesign. Redesign is viewed as a family of 
methods based on some common principles, and a number of dimensions along 
which redesign problem solving methods can vary are distinguished. By examin- 
ing the problem-solving behavior of a number of existing redesign systems and ap- 
proaches, we came up with a collection of problem-solving methods for redesign 
and developed a task-method structure for redesign. 
In constructing a system for redesign a large number of knowledge-related choices 
and decisions are made. In order to describe all relevant choices in redesign prob- 
lem solving, we have to extend the current notion of possible relations between 
tasks and methods in a PSM architecture. The realization of a task by a problem- 
solving method, and the decomposition of a problem-solving method into sub- 
tasks are the most common relations in a PSM architecture. However, we suggest 
to extend these relations with the notions of task refinement and method refine- 
ment. These notions represent intermediate decisions in a task-method structure, 
in which the competence of a task or method is refined without immediately pay- 
ing attention to its operationalization in terms of subtasks. Explicit representation 
of this kind of intermediate decisions helps to make and represent decisions in a 
more piecemeal fashion. 

1 Introduction 

The concept  o f  reusable problem-solving methods (PSMs) is present in many current 
knowledge engineering frameworks,  e.g. Generic Tasks (Chandrasekaran, 1988), Corn- 
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ponents of Expertise (Steels, 1990), Method-to-Task (Gennari et al., 1994), role-limiting 
methods (McDermott, 1988), GTMD (O'Hara & Shadbolt, 1993) and COMMONKADS 
(Wielinga et al., 1993). The interest in PSMs originates from the need to describe and 
explicate generic aspects of the problem solving behavior of knowledge based systems. 
One possible use of PSMs lies in comparing the problem solving behavior of different 
knowledge based approaches and systems for the same or similar tasks. 

In this paper we focus on comparing PSMs for redesign, and on identifying and rep- 
resenting relevant choices in constructing and selecting PSMs for redesign tasks. As the 
notion of redesign incorporates many different methods it is best characterized as a fam- 
ily of problem-solving methods. We have made a knowledge-level analysis of redesign, 
and come up with a collection of problem-solving methods for this task. This collection 
was obtained in a bottom-up manner by examining the problem solving behavior of ex- 
isting redesign systems and approaches, most notably those developed in the REVISE- 
project. Within this project the redesign of technical systems (Eldonk et al., 1996), sim- 
ulation models (Pos et aL, 1997), compositional architectures (Brazier et aL, 1996b) and 
control knowledge in knowledge based systems (Straatman, 1995) is studied. 

The number of knowledge based decisions made during the design of a redesign sys- 
tem is large and diverse. In order to describe all relevant choices and decisions in a task- 
method structure, we need to extend the current notion of possible relations between 
tasks and methods. The general notion of a prblem-solving method as a direct link be- 
tween a task goal and the decomposition of this task into subtasks, is not in itself suffi- 
cient to describe all the relevant choices and decisions. The notions of task refinement 
and method refinement are introduced to represent intermediate decisions in construct- 
ing and selecting PSMs. In these intermediate decisions, the competence of a task or 
method is refined without immediate attention being paid to the operationalization of 
this task or method. This corresponds to changing the exact nature of the problem with 
the aim of making it easier to solve. Explicit representation of these types of intermediate 
decisions help to represent decisions in a more piecemeal fashion. 

The structure of the paper is as follows: In section 2, we present an extended archi- 
tecture of a task-method structure, based on the additional notions of task refinement 
and method refinement. In section 3 we present our view on redesign, and distinguish 
a number of dimensions along which redesign approaches can differ. We also present 
some excerpts from a collection of problem-solving methods for redesign, and use these 
as examples to illustrate the additional refinement relations proposed and their role in de- 
scribing and comparing tasks and problem-solving methods in a task-method structure. 
Section 4 concludes the paper, and points out some implications for knowledge engi- 
neering. 

2 Modeling framework 

A general view on tasks, methods and their mutual relations is the following: A task is 
characterized by a goal it can achieve. A task can potentially be realized by a number of 
problem-solving methods (PSMs). A problem-solving method describes a way to solve 
a task: it decomposes a task into subtasks, each associated with a subgoal, and/or into 
primitive inferences, that directly achieve goals. Recently, focus has shifted from the 
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description of reasoning strategies per se to the description of assumptions underlying 
these reasoning strategies (Akkermans et al., 1994; Benjamins et al., 1996). The idea is 
that PSMs provide solutions to tasks by making assumptions about the precise definition 
of their functionality, and about the available domain knowledge. With this idea in mind, 
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Fig. 1. The architecture of a PSM. 
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(Benjamins et al., 1996) states that a PSM consists of three subparts (presented in figure 
1): 

- its functional specification. This is a declarative description of the input/output be- 
havior of the PSM. 

- its operational specification. This is an account of how to realize that behavior. The 
operational specification of a PSM decomposes a task into subtasks and/or primitive 
inferences, and defines an ordering over these operators. 

- its assumptions. Problem-solving methods make assumptions on the precise defi- 
nition of their functionality (teleological assumptions) and on the availability and 
properties of domain knowledge (ontological assumptions). Teleological assump- 
tions are introduced in matching a task goal to the functional specification of a PSM 
if the functional specification of a PSM is more restricted than the task goal it is 
meant to achieve. Ontological assumptions are introduced when realizing the func- 
tional specification of a PSM by its operational specification, since operationaliza- 
tion often depends on the availability and properties of domain knowledge. 

We tried to use this framework to establish a task-method structure for problem solv- 
ing behavior of different redesign systems and approaches, similar to the task-method 
structure for diagnosis presented in (Benjamins, 1993). However, although the PSM ar- 
chitecture in (Benjamins et al., 1996) is rich, it does not adequately cover all (intermedi- 
ate) types of design decisions we encountered. The current framework provides a limited 
number of relations between tasks and methods: a task goals can be matchedto the func- 
tional specification of a problem-solving method, and a problem-solving method can be 
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realized by an operational specification which decomposes the functional specification 
in a number of subtasks. While trying to construct a task-method structure for redesign, 
we encountered two types of intermediate decisions that can not easily be represented 
in this framework; we call them task refinement and method refinement, respectively. 
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Fig. 2. An extended architecture for PSMs. 

- Task refinement refines a task goal G into a more specific task goal G' but without 
directly making explicit how the task should be solved. Refinement of a task special- 
izes a task goal into a weaker task goal by making additional teleological assump- 
tions about the precise definition of the tasks functionality. 

- Method refinement refines the functional specification F of a PSM into a more re- 
fined functional specification F' without making explicit how exactly this functional 
representation should be operafionalized in terms of (control over) subtasks and/or 
primitive inferences. Competence refinement of a problem-solving method may in- 
troduce both additional teleological assumptions on the precise definition of the func- 
tional specification of a PSM as well as additional ontological assumptions on ad- 
ditional knowledge structures that should be available in the domain knowledge. 
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The competence description (Akkermans et al., 1994) of a method or goal describes 
its problem space and requirements on the solution it produces. Under this definition, 
both decisions described above can be viewed as competence refinements, since they 
refine the functional specification of a task or method without directly making explicit 
how this competence could be achieved. This allows us to describe families of strongly 
related problem-solving methods, which can now be described purely in terms of their 
competence. Both forms of refinement are only to be used as intermediate steps in a task- 
method structure: the ultimate goal of constructing a task-method structure is still to re- 
late a task to be solved to an operational description of how this task should be solved. 
However, the recognition of these two additional relations allow to better distinguish 
and separate different reasoning steps in the construction of a task-method structure. 
Figure 2 shows the additional refinement relations, and their place in the PSM archi- 
tecture. Of course, the process is recursive, i.e. goals of subtasks of a problem-solving 
method can again either be refined to weaker goals or directly operationalized by an op- 
erational specification etc. In the next section we will illustrate the role of our additional 
refinement relations in describing and comparing tasks and problem-solving methods in 
a task-method structure by presenting some excerpts from a collection of PSMs for the 
task of redesign. 

3 Redesign 

Redesign is an inherent part of most design processes, but can also be seen as a family 
of design methods in itself. In contrast to design-from-scratch, redesign starts out with 
an existing design description and modifies this until it fits the current needs as good 
as possible. In order to perform redesign it is essential that some form of knowledge 
is available that allows the adaptation of existing designs. This knowledge is based on 
the following two principles: 1) minimally change the design, and 2) maximally exploit 
existing properties of the domain. An underlying assumption of the task of redesign is 
that the existing design description is "close enough" to fulfill the needs by only limited 
adaptations. However, what is considered close enough in a specific case depends on the 
nature of the adaptation knowledge, and on the way different requirements interact. 

Redesign can play two different roles in the complete design process: First, redesign 
can be seen as a subphase of the design process. Here, design is viewed as an iterative 
process that uses intermediate results as a means of getting a final design description 
which fulfills the requirements. The task of redesign in this context produces a new tem- 
porary design description which is (hopefully) closer to the specification than the former 
design description. This view is the basis for the Propose-Critique-Modify family of de- 
sign methods discussed in (Chandrasekaran, 1990). Secondly, redesign can be consid- 
ered in the context of reuse. Here, redesign starts with a previously constructed design 
description, and a new set of requirements. The previously constructed design descrip- 
tion must now be modified to fulfill the new set of requirements. This view is often con- 
sidered as part of approaches such as case-based design (see e.g. (Kolodner, 1993; Maher 
et al., 1995)), when the already retrieved case is adapted to suit the new requirements. 
Although there are very subtle differences between these two views, in both cases the 
important issue is to bridge the gap between a set of requirements and a design descrip- 
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tion. Therefore, both Iterative Redesign and Redesign for Reuse can be captured by a 
single spectrum of problem-solving methods for redesign. 

REVISE redesign method 

,, 

I critique/modify [ 

Fig. 3. A partial task-method structure for the redesign task. Rectangles represent methods and 
ellipses represent tasks. Dashed lines indicate that methods are alternatives for achieving the task 
goal. Solid lines decompose a method into its subtasks. 

In the work described here, redesign is conceived as consisting of two subtasks: re- 
quirement management and management of the design description. The latter is further 
decomposed into assessment and repair. This decomposition of the redesign task (which 
we will in the remainder of this paper refer to as the "REVISE method") is motivated 
by work in the REVISE-project. Figure 3 presents a partial task-method structure for the 
REVISE method. 

- Requirement  management. This subtask is responsible for specification, manage- 
ment, refinement and adaptation of requirements. Some examples of PSMs for this 
task are discussed in section 3.1. 

- Assessment. This subtask is responsible for determining the differences between the 
(properties of the) current design description and the requirements. These differ- 
ences drive the repair subtask. 

- Repair. Within this subtask, the design description is adapted such that it will bet- 
ter fit the requirements. Determining which part of the design description will be 
adapted (critique), and how it will be adapted (modify) are often tightly coupled 
subtasks in this task. Section 3.2 discusses some examples of PSMs for the subtask 
of design modification. 

The main difference between the REVISE model and other models for (re)design, 
like Propose-Critique-Modify (Chandrasekaran, 1990), lies in the inclusion of the task 
of requirement management in the redesign process. In our point of view, explicit man- 
agement of requirements is essential in non-routine redesign: addition, retraction and 
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modification of the original requirements often forms a major part of any non-routine 
redesign task. Examples of such non-routine redesign tasks can be found in systems for 
redesign of compositional architectures (Brazier et aL, 1996b), simulation models (Pos 
& Akkermans, 1996; Pos et aL, 1997) and software specifications (Funk & Robertson, 
1994). 

Many systems that solve redesign-like problems have been described in literature 
(e.g. (Fischer et aL, 1987; Marcus et al., 1987; Daube & Hayes-Roth, 1989; Goel, 1991; 
Smyth & Keane, 1996; Brazier et aL, 1996a)), but when one takes a closer look at the 
different variants of the redesign task, subtle differences exist that have an impact on 
how the task can be performed and what kinds of knowledge are involved. 

A first source of variation in redesign is the design description. There are several as- 
pects of the design description which are important in the context of redesign. The first 
of these is the fixedness of the structure of the design description; at one end of the spec- 
trum, the structure of the design description can be completely fixed during redesign, and 
only the values assigned to parameters can be altered. This leads to parametric redesign. 
On the other end of the spectrum we have situations where changes to the structure of 
the design description are not limited in any way. Inbetween these extremes, there are 
cases where a skeleton structure is considered to be fixed but where the specific structure 
still can be filled in. Another dimension concerning the design description is the nature 
of the information presented in the design description. At one end of this spectrum the 
design description can purely describe the current status of the design, while at the other 
end the design description includes a complete plan of design steps resulting in the cur- 
rent design. The latter results in a form of redesign called derivational analogy (Mostow, 
1989), while the former is the subject of more standard redesign approaches which di- 
rectly modify the current design description (e.g. KRITIK (Goel, 199t) and 007 (Pos 
et al., 1997)). 

The requirements put on the design description provide a second source of varia- 
tion in redesign. Again, there are several dimensions along which the requirements can 
be classified. The first of these is the operationality of requirements. Requirements are 
operational if their truth can be automatically derived from the design description by 
some inference method. The question to be considered is whether it is sufficient in an 
application domain to express needs and desires with operational requirements only, or 
whether there is a need to express non-operational requirements as well? The latter situ- 
ation requires more extensive support for requirements management. Software design is 
a typical example in which the ability to express non-operational requirements is impor- 
tant in supporting the user in requirement specification. Another dimension with respect 
to the requirements posed on a design description is their (local or global) nature. Local 
requirements are applicable to a single component or parameter, while global require- 
ments specify properties of the complete design. An example of a global requirement is 
the maximum weight of a device; this weight can not be attributed to a single component 
but is a'function of the combined properties of all the components in the device. 

Each redesign process requires some form of knowledge on which adaptations are 
possible/suitable/useful etc. The nature of the adaptation knowledge is the third source 
of variation in redesign. Again, there are several dimensions along which this adapta- 
tion knowledge can be characterized. The first of these is the knowledge intensity of 
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the adaptation knowledge, ranging from purely search based to purely knowledge based 
approaches. A second dimension is the generality of the adaptation knowledge: how 
widely applicable is the adaptation knowledge. Applicatio-specific fixes are at one end 
of this spectrum, while very general strategies like 'divide-and-conquer' are located at 
the opposite end. 

requirements ]design description adaptation knowledge 
operational/ structure search based/ 
non-operational fixed/free tan based 
local/ derivation/ specific/ 
global design generic 

Table 1. Dimensions of redesign problems 

Table 1 summarizes the dimensions along which redesign problems can differ. A 
space of redesign problems can be constructed by taking the Cartesian product of the 
values on each of these dimensions to form a multidimensional problem space for re- 
design problems. Most of the dimensions mentioned here have been described in the 
context of design problems other than redesign (Wielinga & Schreiber, 1997; Bernaras, 
1994). This is a result of the earlier mentioned position of redesign in the spectrum of 
methods for design: redesign is both a part of many other design methods, like case- 
based design, and an umbrella for many different techniques, like parametric (re)design 
and configuration (re)design. 

3.1 Requirement management 

The subtask of requirement management is responsible for specification, management, 
refinement and adaptation of requirements. This task has as its input the current model, 
and as its output it produces an adequate set of requirements, suitable for assessment 
of the design description. Requirement management as a separate task is based on the 
observation that in general a design problem is often initiated by a statement of needs 
and desires (Bernaras, 1994). These, sometimes quite vague, needs and desires are to 
be interpreted and operationalized into a set of requirements suitable for automated as- 
sessment. This corresponds to the task of requirements engineering in software design 
(Wieringa, 1996). Figure 4 presents a partial task-method structure for the requirement 
management task. We identified two methods for this task: ask-user-operational-requirements 
or semi-automated-requirement-management. In many redesign systems, the task of re- 
quirements specification is put completely in the hands of the user, and no automated 
support is provided. This corresponds to the ask-user-operational-requirements PSM. 
On the other hand, a small number of redesign systems (e.g. (Brazier et al., 1996b; Pos 
et al., 1997; Reubenstein & Waters, 1991)) explicitly incorporate some form of semi- 
automated requirement management to ensure that the resulting set of requirements is 
adequate for further processing in the assessment task. 
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Fig. 4. A partial task-method structure for the requirement management task. Rectangles repre- 
sent methods and ellipses represent tasks. Dashed lines indicate that methods are alternatives for 
achieving the task goal. Solid lines decompose a method into its subtasks. Dotted lines indicate 
competence refinement of tasks or methods. Not all methods are decomposed into subtasks and 
primitive inferences. 

A necessary ontological assumption for including any form of semi-automated re- 
quirement specification in a (re)design system is that knowledge on how requirements 
relate to each other is available in the application domain. The extent and nature of this 
knowledge determines which form(s) of requirement management are feasible. Require- 
ment management is primarily useful when the set of possible requirements to be posed 
to the (re)design system is potentially large, when the number of requirements to be si- 
multaneously satisfied may become large or when the need for expressing non-operational 
requirements arises in a (re)design system due to the complexity of the domain involved. 
In cases where the set of possible requirements is small and requirements are not appar- 
ently interacting, requirement management is usually not necessary. 

The PSM 'semi-automated-requirements-management' decomposes the task of re- 
quirement management in three subtasks: propose-requirements, assess-requirements and 
repair-requirements. This decomposition corresponds to the family of methods Chan- 
drasekaran (Chandrasekaran, 1990) calls Propose-Critique-Modify. For the current ex- 
ample, we will focus on the assess-requirements subtask in requirement management. 

Requirement assessment The assess-requirements task takes as input a set of require- 
ments and produces a datum DA that states whether the requirements are adequate or 
not. 
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task name: requirement assessment 
goal: KNOWN(ADEQUATE(R)) V KNOWN(INADEQUATE(R)) 
input role: R: set of requirements 
output role: DA: KNOWN(ADEQUATE(R)) VDA: KNOWN(INADEQUATE(R)) 
By carefully looking at requirement management in different (re)design systems we 

distinguish three different competence refinements of this requirement-assessment task 
to more specialized tasks. Each of these refinements requires different teleological as- 
sumptions, providing different restrictions on the goal of the requirement assessment 
task: KNOWN(ADEQUATE(R)) V KNOWN(INADEQUATE(R)). The input and output roles 
stay the same: in each refinement the task takes as input a set of requirements R and de- 
livers as output a statement on some aspect of the adequacy or inadequacy of R. 

Assess completeness A possible way in which the competence of the assess requirement 
tasks can be refined is to refine the notion o f '  adequacy' to the more specialized notion 
of 'completeness'. The goal of the thus refined assess completeness task then becomes: 
KNOWN(COMPLETE(R)) V KNOWN(INCOMPLETE(R)). This is an example of the in- 
troduction of additional teleological assumptions: the output of the assess requirements 
task is restricted from a statement about the adequacy of the set of requirements to a 
more specialized statement about the completeness of the set of requirements. 

The completeness of a set of requirements can only be assessed with respect to a spe- 
cific problem or a specific set of problems. Problem-solving methods for assessing in- 
completeness of a requirement management in general use problem-specific knowledge 
to decide whether a requirement management is complete with respect to the problem(s) 
posed. This information can e.g. be represented the form of common forms (cliches) for 
different problems (Reubenstein & Waters, 1991; Pus et a l., 1997), in the form of cases 
(Maher & Balacandran, 1994) or in the form of a predefined list of requirements to be 
specified (Brazier et aL, 1996c). A necessary ontological assumption for each of these 
PSMs is that knowledge on when a set of requirements is supposed to be complete is 
present in the domain knowledge. 

Other possible refinements of the requirement assessment task are checking whether 
the set of requirements is internally consistent (assess consistency), or checking whether 
each requirement is fully operationalized (assess operationality), i.e. can automatically 
be inferred from the design description by some inference procedure. This does not mean 
that these refinements are mutually exclusive: an actual redesign system can include one 
or more refinements. 

All three tasks refinements are pure competence refinements of the original task goal 
'assess requirements': they do not make any claims on how the task goal should be oper- 
ationalized in terms of subtasks, but only on the way the task goal should be further spec- 
ified. This allows us to view the task 'requirement assessment' as an abstract description 
for a family of related tasks, each of which tests a different aspect of the 'adequacy' of a 
set of requirements. Our purpose in constructing the notion of task refinements has been 
to better distinguish different steps, corresponding to different design decisions, in the 
construction and classification of problem-solving methods. The next step is to either 
refine the current task further to an even more specialized task, or to match sufficiently 
refined task goals to the functional description of (a family of) PSMs which might be 
able to achieve the goal of the refined task. 
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3.2 Design modification 

The task of  design modification modifies part of the current design description to solve 
one or more discrepancies between the set of requirements and the current design de- 
scription. Figure 5 presents a partial task decomposition of this task. This task has as in- 
put (a part of) the design description and delivers as output a modified version of this part 
that is hopefully more suitable in the new situation. Three general families of problem- 
solving methods for this task are substitution, transformation and generation (Maher 
et al., 1995). Substitution methods substitute a part of the old design description with a 
new part more suitable for the new situation. Transformation methods are used to trans- 
form an old solution into one that will (hopefully) work in the new situation. Generative 
methods re-enact (part of) the reasoning trace to modify the design description. FIRST 
(Daube & Hayes-Roth, 1989), a case-based system for redesign of mechanical systems, 
and COBRA (Finn etal., 1992), a case-based system for redesign of heat-transfer mod- 
els, provide examples of the latter approach. Both systems retrieve 'redesign plans' from 
a case-base and transfer these plans to the new problem at hand. 

f~- 'modify-~. ,h 

[ direct 1 substitutionlby applicaiion ~ ~  
substitution search I specific I 

~ l r e i n s t a n t i a t e I ~  specialize~ ~ ~ "  " 

Fig. 5. A partial task decomposition of the modify-design-description task. 

Several dimensions of redesign (Table 1) play a role as ontological assumptions in 
this choice between alternative (families of) PSMs: whether the structure of the design is 
supposed to be fixed, and whether the reasoning trace or the end product of design is used 
for redesign. Generative methods make use of a reasoning trace, while substitution and 
transformation methods require only the end product of design in the form of a design 
description. Substitution and transformation methods mainly differ in their assumptions 
on system structure: substitution methods assume that the system structure is fixed, while 
transformation methods assume that the structure of the design is adaptable. 

Substitution methods can be further specialized in direct substitution methods and 
substitution by search. This distinction is based on the dimension of redesign concerning 
the plan based versus search based nature of adaptation knowledge. This dimension de- 
fines ontological assumptions on the type of additional knowledge necessary to make the 
PSMs work: substitution by search requires some sort of database in which substitution 
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elements can be found, while direct substitution methods require procedural knowledge 
on how to decide on a new value for a part of the old design description. Search-based 
substitution methods can be further specialized by considering the additional knowledge 
necessary for searching: query memory (Hinfichs & Kolodner, 1991) requires informa- 
tion on what to look for, in the form of a partial description of the item searched for. 
Local search, which can e.g. be found in PLEXUS (Alterman, 1986), requires instruc- 
tions on where to search for alternatives. Specialized search, which can e.g. be found 
in the SWALE system (Schank & Leake, 1989), requires instructions on how to find an 
alternative. Case based substitution, which can e.g. be found in the JULIA system (Hin- 
richs & Kolodner, 1991), requires instructions on how to find a similar case which might 
suggest an appropriate alternative. 

Transformation methods can be further specialized by considering the general or 
specific nature of the modification knowledge used for transformation: generic strate- 
gies like'divide-and-conquer', which can e.g. be found in JULIA (Hinrichs & Kolodner, 
1991), form one end of this spectrum, while application-specific heuristics, which can 
e.g. be found in the VT-system for elevator design (Marcus et al., 1987), form the other 
end of the spectrum. Systems like KRITIK (Goel, 1991) and 007 (Pos et al., 1997) fall 
somewhere in between: the repair plans used in these systems are general enough to be 
applied to many different problems, but not as generic as general strategies like 'divide 
and conquer'. 

All the method specializations discussed above are competence refinements: they 
only make claims on the functional specification of (a family of) problem-solving meth- 
ods, and not on how these PSMs should be operationalized in terms of subtasks and con- 
trol.Method refinements represent intermediate decisions in the classification of PSMs. 
Our purpose in constructing these intermediate relations has been to better distinguish 
different design decisions as separate steps in the classification of PSMs, based on the di- 
mension underlying each design decision. They allow us to describe a family of related 
PSMs by means of an abstract functional specification common to all its members. In 
the original PSM framework, these intermediate, seperate design decisions would either 
have be compressed into direct relations between the task and the bottom-level PSMs 
(e.g., one way to satisfy the task 'modify design description' is to directly use the bottom- 
level PSM 'substitution by local search'), or an intermediate operationalization would 
have to be constructed for each family of PSMs in the refinement decomposition. 

The task decomposition depicted in Figure 5 covers the same set of methods as the 
classification of adaptation methods and strategies in case-based reasoning presented in 
(Kolodner, 1993). This lends further support to our claim that redesign methods form a 
part of several more general design paradigms, of which case-based reasoning is one. 

4 Conclusions & Related Work 

Redesign is an inherent part of most design processes, but can also be seen as a family 
of design methods in itself. In the latter point of view, redesign is a family of problem- 
solving methods for which two questions need to be answered:"what is common to re- 
design?" and "which dimensions are involved in characterizing redesign?". The family 
of methods called redesign can be characterized by a number of common principles: re- 
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design starts with an existing design description, and it requires some form of knowledge 
that allows the adaptation of designs. This knowledge is based on two underlying prin- 
ciples: (1) minimizing the changes being made to the design description and (2) maxi- 
mizing the exploit of known properties of the design description. These characteristics 
can be used to differentiate this family of methods from other design methods. In order 
to compare different (families of) problem-solving methods for the same task we dis- 
tinguished a number of dimensions along which redesign methods can differ: the nature 
of the design description, the nature of the requirements and the nature of the adapta- 
tion knowledge are the three main sources of variation in the family of problem-solving 
methods called redesign. 

We also presented a general model of redesign developed in the REVISE-project. 
The main tasks in this general model are requirement management, artifact assessment 
and artifact repair. The task of requirement management has not often been modeled 
in other (re)design models, but is in our view essential in non-routine (re)design. Re- 
quirement management in design corresponds to the task of requirements engineering 
in software design (Wieringa, 1996). Each of these redesign subtasks can be achieved 
by one or more (families of) PSMs. In this paper we selected two subtasks, requirement 
management and artifact modification, and described task-structures for these subtasks 
in somewhat more detail. For the other redesign subtasks similar task-structures have 
been developed. 

In developing a knowledge based system for a redesign task a large number of choices 
and decisions are made. In order to express all these decisions as separate reasoning steps 
in a task-method structure, the current notion of possible relations between tasks and 
methods in a PSM architecture needs to be extended. Notions of task refinement and 
method refinement are introduced to represent intermediate decisions in a task-method 
structure, in which the competence of (a family of related) tasks or methods is refined 
without directly paying attention to the operationalization in terms of subtasks and con- 
trol. Explicit representation of this kind of abstract, intermediate reasoning steps helps 
to make and represent decisions in a task-method structure in a more piecemeal fashion. 

The characterization of tasks and methods for redesign presented in this paper is in- 
formal. We think that this type of characterization is useful in the early stages of KBS 
design, where problem-solving methods are constructed and selected to construct the 
skeleton design model for a knowledge based system. In this early stage of KBS design, 
common sense descriptions of problem-solving methods and their underlying knowl- 
edge requirements (in terms of teleological and ontological assumptions made by each 
problem-solving method) will often be used in advance of any formal work. In a later 
stage, adapters as proposed in (Fensel, 1997), could be used to implement and formalize 
the additional refinement relations proposed here in an informal context. 

An alternative approach to specifying and selecting PSMs is presented in (ten Teije 
et al., 1996). Here, a family of PSMs for diagnosis tasks is represented by a skeletal 
functional description, with a number of subfunctions. Values for these are chosen from 
a fixed set to obtain a specific diagnostic function. Parametric design can then be used to 
construct a specific method functionality. However to construct such a skeleton and ap- 
propiate values requires a well-understood formalisation of different methods and their 
properties, which does not yet exist for redesign methods. 
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The extended PSM framework described in this paper has been used to describe rel- 
evant choices in selecting problem-solving methods for a specific redesign system in the 
domain of computational engineering models, called 007 (Pos et al., 1997). In the near 
future, we plan to use this framework to describe other redesign systems, starting with 
the redesign systems which are at the moment being developed by the other participants 
in the REVISE-project. These systems focus on redesign of compositional architectures 
(Brazier et al., 1996b) and redesign of control knowledge in knowledge based systems 
(Straatman, 1995), respectively. 
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