Abstract
The λΔ-calculus is a λ-calculus with a control-like operator whose reduction rules are closely related to normalisation procedures in classical logic. We introduce λδexp, an explicit substitution calculus for λΔ and study its properties. In particular, we show that λΔexp preserves strong normalisation, which provides us with the first example -moreover a very natural one indeed of explicit substitution calculus which is not structure-preserving and has the preservation of strong normalisation property. One particular application of this result is to prove that the simply typed version of λΔexp is strongly normalising.
In addition, we show that Plotkin's call-by-name continuation-passing style translation may be extended to λΔexp and that the extended translation preserves typing. This seems to be the first study of CPS translations for calculi of explicit substitutions.
This work is supported by NWO and the British council under UK/Dutch joint scientific research project JRP240 and EPSRC grant GR/K 25014.
Preview
Unable to display preview. Download preview PDF.
References
M. Abadi, L. Cardelli, P. L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of Functional Programming, 1(4):375–416, 1991.
A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
P. Audebaud. Explicit substitutions for the λμ-calculus. Technical Report RR94-26, Ecole Normal Superieure de Lyon, 1994.
H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Holland, 1984.
G. Barthe, J. Hatcliff, and M.H. Sørensen. A notion of classical pure type system. In Proceedings of MFPS'97, volume 6 of Electronic Notes in Theoretical Computer Science, 1997. To appear.
Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λv a calculus of explicit substitutions which preserves strong normalisation. Journal of Functional Programming, 6(5), 1996.
R. Bloo. Preservation of Strong Normalisation for Explicit Substitution.Technical Report CS-95-08, Department of Mathematics and Computing Science, Eindhoven University of Technology, 1995.
R. Bloo and H. Geuvers. Explicit substitution: On the edge of strong normalisation. Technical Report CS-96-10, Department of Mathematics and Computing Science, Eindhoven University of Technology, 1996.
R. Bloo and K. Rose. Combinatory reduction systems with explicit substitutions that preserve strong normalisation. In H. Gansinger, editor, RTA '96, volume 1103 of Lecture Notes in Computer Science. Springer-Verlag, 1996.
P. L. Curien, T. Hardin, and J. J. Lévy. Confluence properties of weak and strong calculi of explicit substitutions. Journal of the ACM, 43(2):362–397, March 1996.
G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit substitutions. In Proceedings of the Tenth Annual Symposium on Logic in Computer Science, pages 366–374. IEEE Computer Society Press, 1995.
R.K. Dybvig. The Scheme Programming Language. Prentice-Hall, 1987.
M. Felleisen, D.P. Friedman, E. Kohlbecker, and B. F. Duba. A syntactic theory of sequential control. Theoretical Computer Science, 52(3):205–237, 1987.
T.G. Griffin. A formulae-as-types notion of control. In Principles of Programming Languages, pages 47–58. ACM Press, 1990.
T. Hardin. Confluence Results for the Pure Strong Categorical Logic CCL: λ-calculi as Subsystems of CCL. Theoretical Computer Science, 65(2):291–342, 1989.
H. Herbelin. Elimination des coupures daps les sequents qu'on calcule. PhD thesis, Université de Paris 7, 1994.
F. Kamareddine and R. P. Nederpelt. A useful λ-notation. Theoretical Computer Science, 155:85–109, 1996.
F. Kamareddine and A. Rios. A λ-calculus à is de Bruijn with explicit substitutions. Proceedings of PLILP'95. Lecture Notes in Computer Science, 982:45–62, 1995.
J. W. Klop. Term rewriting systems. Handbook of Logic in Computer Science, II, 1992.
J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: Introduction and survey. Theoretical Computer Science, 121:279–308, 1993.
L. Magnusson. The implementation of ALF. a proof editor based on Martin-Lōf's monomorphic type theory with explicit substitution. PhD thesis, Department of Computer Science, Chalmers University, 1994.
A.R. Meyer and M. Wand. Continuation semantics in typed lambda-calculi (summary). In R. Parikh, editor, Logics of Programs, volume 193 of Lecture Notes in Computer Science, pages 219–224. Springer-Verlag, 1985.
C. Muñoz. Proof representation in type theory: State of the art. XXII Latinamerican Conference of Informatics CLEI Panel 96, June 3–7, 1996, Santafé de Bogotá, Colombia, April 1996.
C. Murthy. Extracting Constructive Contents from Classical Proofs. PhD thesis, Cornell University, 1990.
M. Parigot. λμ-calculus: An algorithmic interpretation of classical natural deduction. In International Conference on Logic Programming and Automated Reasoning, volume 624 of Lecture Notes in Computer Science, pages 190–201. Springer-Verlag, 1992.
G. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1(2):125–159, December 1975.
D. Prawitz. Natural Deduction: A proof theoretical study. Almquist & Wiksell, 1965.
N.J. Rehof and M.H. Sørensen. The λΔ calculus. In M. Hagiya and J. Mitchell, editors, Theoretical Aspects of Computer Software, volume 789 of Lecture Notes in Computer Science, pages 516–542. Springer-Verlag, 1994.
E. Ritter, D. Pym, and L. A. Wallen. On the intuitionistic force of classical search.In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Procedings of TABLEA U'96, volume 1071 of Lecture Notes in Artificial Intelligence, pages 295–311. Springer Verlag, 1996.
G. L. Steele. Common Lisp: The Language. Digital Press, Bedford, MA, 1984.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barthe, G., Kamareddine, F., Ríos, A. (1997). Explicit substitutions for the λΔ-calculus. In: Hanus, M., Heering, J., Meinke, K. (eds) Algebraic and Logic Programming. ALP HOA 1997 1997. Lecture Notes in Computer Science, vol 1298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027012
Download citation
DOI: https://doi.org/10.1007/BFb0027012
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63459-1
Online ISBN: 978-3-540-69555-4
eBook Packages: Springer Book Archive