
Weak Re�nement in ZJohn Derrick, Eerke Boiten, Howard Bowman and Maarten Steen?Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.(Phone: + 44 1227 764000, Email: J.Derrick@ukc.ac.uk.)Abstract. An important aspect in the speci�cation of distributed sys-tems is the role of the internal (or unobservable) operation. Such opera-tions are not part of the user interface (i.e. the user cannot invoke them),however, they are essential to our understanding and correct modelling ofthe system. Various conventions have been employed to model internaloperations when specifying distributed systems in Z. If internal oper-ations are distinguished in the speci�cation notation, then re�nementneeds to deal with internal operations in appropriate ways. However,in the presence of internal operations, standard Z re�nement leads toundesirable implementations.In this paper we present a generalization of Z re�nement, called weakre�nement, which treats internal operations di�erently from observableoperations when re�ning a system. We illustrate some of the proper-ties of weak re�nement through a speci�cation of a telecommunicationsprotocol.Keywords: Re�nement; Distributed Systems; Internal Operations; ProcessAlgebras; Concurrency.1 IntroductionNow the use of Z for the speci�cation of sequential systems is gaining acceptance,attention is being turned to new domains of applicability - one such exampleis the use of Z for the speci�cation of concurrent and distributed systems [5,17, 14, 13, 19]. One aspect that is important in the speci�cation of distributedsystems is the role of the internal (or unobservable) operation. Such operationsare not part of the user interface (i.e. the user cannot invoke them), however,they are essential to our understanding and correct modelling of the system.Internal operations (or actions) arise naturally in distributed systems, eitheras a result of modelling concurrency or the non-determinism that is inherentin a model of such a system. For example, internal operations can be used tomodel communication (e.g. as in the language CCS [15]), non-determinism arisesas a by-product of this interpretation. Internal operations are also central toabstraction speci�cation through hiding, a particularly important example of� This work was partially funded by British Telecom Research Labs., and the EPSRCunder grant number GR/K13035.



this is to enable communication to be internalised - a central facet in the designof distributed systems.Languages speci�cally targeted at concurrent systems typically have a notionof internal action or operation built into the language. For example, internal op-erations form a vital part of the theory of process algebras, and a special symbolis reserved for the occurrence of such an internal event (e.g. i or �). If an inter-nal operation is distinguished in the speci�cation notation, then re�nement andequivalence relations de�ned over the language need to deal with internal oper-ations in appropriate ways. One way is to treat an internal event no di�erentlyfrom observable events, an example of such a relation is strong bisimulation in aprocess algebra [15]. However, it is well recognised that this is inappropriate asa re�nement relation, and that internal events should typically have a di�erentrole within re�nement and equivalence relations. Examples of relations in whichthe observable is di�erentiated from the internal are weak bisimulation [15],testing equivalence [3], reduction and extension [4], failures re�nement [11] andHennessy's testing pre-orders [10]. Central to these relations is the understand-ing that internal events are unobservable, and that re�nement relations mustre�ne the observable behaviour of a speci�cation di�erently from its internalbehaviour.A number of authors have adopted conventions for specifying internal opera-tions when modelling systems in Z. In each case the internal operation is speci�edas normal and either has a distinguished name or informal commentary tellingus that it is not part of the user interface. If internal operations appear explicitlyin a Z speci�cation, we need to consider the possibility of re�ning these speci-�cations. How should we treat the re�nement of internal operations in Z? Weseek here to contribute to the debate by making a proposal called weak re�ne-ment. This has a similar relation to ordinary Z re�nement as weak bisimulationdoes to strong bisimulation in a process algebra. In particular, we de�ne weakre�nement by considering the stand point of an external observer of the system,who manipulates operations in the user interface.Such an external observer will require that a retrieve relation is still de�nedbetween the state spaces of the abstract and concrete speci�cations and that eachabstract observable operation AOp is recast as a concrete observable operationCOp. The weak re�nement relation is de�ned to ensure that the observable be-haviour of the concrete speci�cation is a re�nement of the observable behaviourof the abstract speci�cation.Throughout the paper we assume the state plus operations style of Z speci-�cation, and our discussion takes place within that context.The structure of the paper is as follows. In Section 2 we review the need forinternal operations in Z speci�cations. Section 3 presents an example of a speci�-cation and re�nement involving internal operations, the example illustrates thatstandard Z re�nement is too liberal in the presence of internal operations. Section4 formulates the generalization that we call weak re�nement, which is motivatedby the treatment of internal events in process algebras. Section 5 revisits theprotocol example to show that weak re�nement has the required properties of



a re�nement where internal operations have been speci�ed. Section 6 discussessome properties of this re�nement, and we conclude in Section 7.2 Internal OperationsWhen modelling sequential systems in Z, the operations represent the user inter-face. That is, a state change occurs in the system if and only if the user invokesone of the operations. However, when modelling concurrent and distributed sys-tems it is convenient to model internal operations. These internal operationsrepresent operations over which the user has no control (hence the name inter-nal). Since they are not part of the user interface they can be invoked by thesystem (potentially non-deterministically) whenever their pre-conditions hold.They can arise either due to the natural non-determinism of a distributed sys-tem [11], or due to communication within the system [15] or due to some aspectof the system being hidden at this level of abstraction [2]. The necessity for thespeci�cation of internal events in process algebras is well recognised [15], and anumber of researchers have found it convenient or necessary to specify internaloperations in Z when specifying distributed systems [7, 16, 19, 21, 9]. In eachcase the internal operation is speci�ed as normal and either has a distinguishedname or informal commentary telling us that it is not part of the user interface.We will see examples of both below. Used in this way, Z is clearly su�cient as anotation for the speci�cation of internal operations or actions.Is this necessary however, why not leave internal operations to process alge-bras? Well, Z is particularly suited to the speci�cation of parts of a distributedsystem which contain large amounts of state information. Typical to this classare managed objects [20] or the information viewpoint of the Open DistributedProcessing reference model [12], where the speci�cations contain a lot of statebut there is also a need to model internal operations such as alarms.Although Z is adequate as a notation for the speci�cation of internal ac-tions/operations, the usual Z re�nement rules for operations are inappropriatefor speci�cations containing internal operations. As we shall see (at the end ofSection 3.2) they are inappropriate because they allow a re�nement to containmore non-determinism than is acceptable. This situation is clearly undesirable,and we must re-formulate re�nement for internal operations if they are to beused in Z speci�cations. This is what we seek to do here.3 Re�nementA Z speci�cation describes the state space together with a collection of opera-tions. The Z re�nement relation [18, 21], de�ned between two Z speci�cations,allows both the state space and the individual operations to be re�ned in auniform manner.Operation re�nement is the process of recasting each abstract operation AOpinto a concrete operation COp, such that (informally) the following holds. The



pre-condition of COp may be weaker than the pre-condition of AOp, and COpmay have a stronger post-condition than AOp. That is, COp must be applicablewhenever AOp is, and if AOp is applicable, then every state which COp mightproduce must be one of those which AOp might produce. Data re�nement ex-tends operation re�nement by allowing the state space of the concrete operationsto be di�erent from the state space of the abstract operations. Re�nement forsequential systems speci�ed in Z is well documented and understood. How doesre�nement behave in the presence of internal operations?As an illustration of re�nement involving internal operations we consider thespeci�cation and re�nement of a telecoms protocol (the Signalling System No. 7standard) adapted from [21]. The �rst speci�cation de�nes the external view ofthe protocol, subsequently we develop a sectional view which speci�es the routethat messages take through the protocol.3.1 Speci�cation 1: the external viewLet M be the set of messages that the protocol handles. The state of the sys-tem comprises two sequences which represent messages that have arrived in theprotocol (in), and those that have been forwarded (out).Extin; out : seqM9 s : seqM � in = s a outIncoming messages are added to the left of in, and the messages contained in inbut not in out represent those currently inside the protocol. The state invariantspeci�es that the protocol must not corrupt or re-order. Initially, no messageshave been sent:ExtInit b= [Ext 0 j in 0 = h i ]Two operations then model the transmission (Transmit) and reception (Receive)of messages into and out of the protocol. Their speci�cation is straightforward. Inthe Receive operation, either no message is available (e.g. they are all on route inthe protocol) or the next one is output, this choice is made non-deterministicallyat this level of abstraction.Transmit�Extm? : Min 0 = hm?i a inout 0 = out



Receive�Extin 0 = in#out 0 = #out + 1 _ out 0 = out3.2 Speci�cation 2: the sectional viewThe sectional view speci�es the route the messages take through a number ofsections. Let N be the number of sections. Each section in the route may receiveand send messages, and those which have been received but not yet sent on are inthe section. The messages pass through the sections in order. In the state schema,ins i represents the messages currently inside section i , rec i the messages thathave been received by section i , and sent i the messages that have been sentonwards from section i . The state and initialization schemas are then given bySectionrec; ins ; sent : seq(seqM )N = #rec = #ins = #sentrec = ins aasentfront sent = tail rec SectionInitSection 08 i : 1::N �rec i = ins i = sent i = h iwhere aadenotes pairwise concatenation of the two sequences (so for every iwe have rec i = ins i a sent i). The predicate front sent = tail rec ensures thatmessages that are sent from one section are those that have been received by thenext. This speci�cation also has operations to transmit and receive messages,and they are speci�ed as follows:STransmit�Sectionm? : Mhead rec0 = hm?i a (head rec)tail rec0 = tail recsent 0 = sentSReceive�Sectionrec0 = recfront ins 0 = front inslast ins 0 = front(last ins)front sent 0 = front sentlast sent 0 = hlast(last ins)ia (last sent)



Here, the new message received is added to the �rst section in the route inSTransmit , and SReceive will deliver from the last section in the route. In the�rst speci�cation, messages arrive non-deterministically, in the sectional viewthis is represented by the progress of the messages through the sections. There-fore in this more detailed design, we need to specify how the messages progressthrough the sections, and we do so by de�ning an operation Daemon which non-deterministically selects a section to make progress. The oldest message is thentransfered to the following section, and nothing else changes. The important partof this operation is then:Daemon�Section9 i : 1::N � 1 jins i 6= h i �ins 0i = front(ins i)ins 0(i + 1) = hlast(ins i)i a ins(i + 1)8 j : 1::N j j 6= i ^ j 6= i + 1 � ins 0j = ins jDaemon is an internal operation (the informal commentary accompanyingthe speci�cation tells us this), and so can be invoked by the system whenever itspre-condition holds. As noted in [21]: This operation is not part of the user inter-face. The user cannot invoke Daemon, but it is essential to our understandingof the system and to its correctness.The sectional view is a re�nement of the original, where the retrieve relation(which is a total function, i.e. 8Section � 91 Ext � Retrieve) is given by:RetrieveExtSectionhead rec = inlast sent = outUnder this re�nement STransmit and SReceive correspond to Transmit andReceive respectively, and the internal operation Daemon corresponds to the ex-ternal operation �Ext (i.e. the identity operation on Ext), and we can prove(with appropriate quanti�cation over the states) the re�nement by showing that:SectionInit ^ Retrieve ) ExtInitpreTransmit ^ Retrieve ) preSTransmitpreTransmit ^ Retrieve ^ STransmit ^ Retrieve 0 ) TransmitpreReceive ^Retrieve ) preSReceivepreReceive ^Retrieve ^ SReceive ^Retrieve 0 ) Receivepre�Ext ^ Retrieve ) preDaemonpre�Ext ^ Retrieve ^ Daemon ^ Retrieve 0 ) �Ext



So far so good. We can specify a system that contains non-determinism insome of the operations in its user interface (e.g. Receive), but which doesn'tcontain any internal operations. We can then re�ne this speci�cation to one thatcontains internal operations that correctly model (in the sense of a re�nementexisting) the abstract speci�cation. Here we have used the standard Z re�nementrelations, which have been perfectly adequate at this level.However, we can re�ne this sectional view further. Consider the Daemonoperation. This operation is partial (as it does not specify what happens ifins i = h i for every i), and using standard Z re�nement we can weaken itspre-condition, and re�ne it to the following:NDaemon�Section(8 i : 1::N � 1 � ins i = h i ) ins 01 = hmi ^m 2 M ) _(9 i : 1::N � 1 jins i 6= h i �ins 0i = front(ins i)ins 0(i + 1) = hlast(ins i)i a ins(i + 1)8 j : 1::N j j 6= i ^ j 6= i + 1 � ins 0j = ins j )This operation has the same functionality as before, except that in additionthe system can invoke it non-deterministically (since it is an internal opera-tion) initially to insert an arbitrary message into the �rst section. Thus initiallythere are two possible behaviours of the system: as before the user could in-voke Transmit to insert a message into the protocol, or now the system couldnon-deterministically invoke NDaemon which corrupts the input stream of theprotocol before the user has inserted any messages.The speci�cation which contains the sectional view operations together withthis new NDaemon is a re�nement of the sectional view. Yet clearly implemen-tations which introduce arbitrary amounts of noise into a stream of protocolmessages are unacceptable. But in this situation, using standard Z re�nementthis has been allowed to happen, what has gone wrong?We have used standard Z re�nement here, and at issue is the re�nement ofinternal operations. Internal operations have behaviour which isn't subject tothe normal interpretation of operations (that are in the user interface), so it isnot surprising then that using normal re�nement brings about unexpected (andundesirable) consequences.3.3 The �ring condition interpretationOne possible solution is described by Strulo in [19], which has the merit ofsimplicity, but, as we shall see, perhaps constrains re�nement too far. Strulocalls internal operations active, and operations in the user interface passive. The�ring condition interpretation is the idea that the pre-condition states the only



times the operation can happen at all instead of saying an operation is unde�ned(but possible) outside its pre-condition.To de�ne re�nement, [19] identi�es three regions for an operation (uncon-strained, empty and interesting) and the applicability and correctness re�nementrules are then re-interpreted for internal operations as:` COp ) AOp` (9State 0 � AOp) ^ (9 State 0 � :AOp))(9State 0 � COp) ^ (9 State 0 � :COp)The three regions of an operation represent: (1) states where the operation isdivergent because no constraints are made on the after state (the unconstrainedregion), (2) states outside the usual pre-condition but which aren't divergent(the empty region), and (3) the remaining states where some but not all afterstates are allowed (the interesting region). For a full discussion the reader shouldconsult [19].In terms of these interpretations and the regions of de�nition of an opera-tion, the �rst condition prevents an operation becoming possible where it wasimpossible, and the second condition ensures that the concrete operation doesn'tbecome impossible where it was de�ned and possible.Application of these ideas to the above example shows that with the �ringcondition interpretation, NDaemon is not a re�nement of Daemon. Thus wesuccessfully stop the pre-condition of an internal operation from being weakenedin an unacceptable manner. However, to achieve this a barrier has been placedbetween observable and unobservable operation re�nements. In particular, forhybrid speci�cations (ones involving both internal and observable operations),the re�nement rules used depend on the type of operation - standard re�nementfor observable operations, and the �ring condition interpretation for internaloperations.But the division is not always as simple as that, on occasion we may wishto introduce internal operations during a re�nement, or we may wish to removeinternal operations in a re�nement. The re�nement of the external view to thesectional view is an example of the introduction of internal operations, and wewill give an example of their removal shortly.However, we �nd that under the �ring condition interpretation, the sec-tional view is not a re�nement of the external view of the protocol, because nowDaemon does not correspond to �Ext under the �ring condition interpretationre�nement rules. To overcome this, can we restrict the use of the �ring conditioninterpretation re�nement rules to when the abstract operation is internal? Thefollowing very simple example will illustrate that we cannot.Consider an abstract speci�cation with an operation AOp in the user in-terface, and an internal operation IOp. The concrete speci�cation consists of asingle operation COp. Both have state space State consisting of a mode : f0; 1g.Initially mode is set to 0. The only operations in the speci�cations are given by:



AOp�Statemode = 0 ^mode 0 = 1 IOp�State;error ! : yes j nomode = 1 ^mode 0 = 0error ! = yesCOp�State;error ! : yes j nomode = mode 0 = 0 ^ error ! = yesIt is natural to view the concrete speci�cation as a re�nement of the abstract.In the abstract, after invoking AOp an error message will occur (triggered bythe internal operation IOp happening non-deterministically, which it eventuallyalways will), in the concrete, after invoking COp an error message will occur.This type of removal of internal events lies at the heart of all treatments ofinternal operations in process algebras. However, under the �ring condition in-terpretation, the concrete operation is not a re�nement of the abstract, becauseno operation that was possible can become impossible - even if the internal be-haviour has moved elsewhere. The fact that IOp has an output here is immaterialto the essence of the example - the aspect of internal operations with output isdiscussed in Section 5.2.So, to summarise, standard Z re�nement is too liberal in the presence ofinternal operations. An alternative approach is that suggested in [19], however,this involves a di�erent interpretation of operations, and the re�nement of inter-nal behaviour can be too strict as the last example shows. In the next section wewill seek an alternative generalization of re�nement that steers a middle courseby using ideas from process algebras.4 Weak Re�nementTo de�ne weak re�nement we will consider the standpoint of an external observer.Such an external observer will require that a retrieve relation is still de�nedbetween the state spaces of the abstract and concrete speci�cations and that eachobservable operation AOp is recast as a concrete operation COp. The re�nementrelation will ensure that the observable behaviour of the concrete speci�cationis a re�nement of the observable behaviour of the abstract speci�cation.The weak re�nement rules have the same form as standard re�nement, namelythat:{ 8 Ik ; Cstate 0 � Cinitw ` 9 Il ; Astate 0 � Ainitw ^ Ret 0{ 8 Ik � prew AOp ^Ret ` 9 Il � prew COp



{ 8 Ik ; Ip ; Iq � prew AOp ^ Ret ^ COpw ` 9 Im ; In ; Astate 0 � Ret 0 ^ AOpwexcept that the subscript w denotes a weak counterpart which we will de�nebelow and Ik are sequences of internal operations. The next subsection reviewsthe treatment of internal events in process algebras, and we use these ideas tomotivate our formulation of weak re�nement in the following subsection.4.1 Internal events in Process AlgebrasRe�nement in a process algebra is de�ned in terms of the transitions a behaviourcan undertake, and we write P a�! P 0 if a process (or behaviour) P can performthe action a and then evolve to the process P 0. Re�nements and equivalences aregiven in terms of such transitions. For each relation, two versions are possible - astrong relation which treats all actions identically whether observable or not, anda weak version that makes allowances for internal events and is only concernedwith observable transitions.To make allowances for internal actions, consideration is given to what ismeant by an observable transition. An observable transition is taken to beany observable action preceded or succeeded by any (�nite) number of inter-nal events.Weak or observable relations now replace transitions P a�! P 0 by their ob-servable counterpart: P a=) P 0, which means that process P can evolve toprocess P 0 by undergoing an unspeci�ed (but �nite) number of internal events,followed by the action a, followed by an unspeci�ed number of internal events.Weak bisimulation (or observational equivalence) is an example of a relationde�ned in such a fashion [15].4.2 Formulating weak re�nementThroughout this subsection let the state spaces of the abstract and concretespeci�cations be Astate and Cstate respectively. Let Ret be the retrieve relationde�ned between the speci�cations. AOp and COp stand for operations on theabstract and concrete state spaces where COp implements AOp. The initialstates are given by Cinit and Ainit .Our formulation of weak re�nement will be motivated by the approach takenin process algebras. Application of an operation in Z corresponds to a transitionin a process algebra, and in weak re�nement in place of the application of anoperation Op we allow a �nite number of internal operations before and afterthe occurrence of the operation. This corresponds to the change from P a�! P 0to P a=) P 0 in a process algebra when moving from a strong to observablescenario. This can be described in the Z schema calculus by saying there existinternal operations i1; : : : ; ik ; j1; : : : ; jl (for k ; l � 0) and the application of thecomposition i1 o9 : : : o9 ik o9Op o9 j1 o9 : : : o9 jl . Throughout this section we abbreviatei1o9: : :o9ik to ik , and we will let Ik denote a sequence of internal actions hi1; : : : ; ik i.We can now re-formulate each of the three conditions for re�nement for asystem containing internal operations. We begin with the initialization condition.



InitializationWithout internal operations the relationship required upon initialization is thateach possible initial state of the concrete speci�cation must represent a possibleinitial state of the abstract speci�cation. In the presence of internal operationsan initial state might evolve internally to another state. Therefore, \each possibleinitial state of the concrete speci�cation" now includes all possible evolutions ofthe initial state under internal operations. Likewise \a possible initial state ofthe abstract speci�cation" can now include a potential evolution of the initialstate due to internal operations.To formalise this (using the abbreviation ik = i1 o9 : : : o9 ik ) we require that:8 Ik ; Cstate 0 � Cinit o9 ik ` 9 Il ; Astate 0 � Ainit o9 i l ^ RetThe quanti�cation of the internal operations in Cinit o9 ik is important. Whatwe wish to ensure is that every initial concrete path (including all possible inter-nal operations) can be matched by some initial abstract path (possibly involvinginternal operations). We abbreviate the condition to8 Ik ; Cstate 0 � Cinitw ` 9 Il ; Astate 0 � Ainitw ^ Ret 0ApplicabilityApplicability must ensure that if an abstract and concrete state are related bythe retrieve relation, then the concrete operation should terminate whenever theabstract operation terminated, where termination is usually expressed in termsof satisfaction of the pre-condition of an operation. In the presence of internaloperations we must allow for potential invocation of internal operations, andhence require that: if an abstract and concrete state are related by the retrieverelation, then whenever the abstract operation terminates possibly after anyinternal evolution then the concrete operation terminates after some internalevolution.This is described by saying there exists internal operations i1; : : : ; ik such thatpre(i1 o9 : : : o9 ik o9 AOp) where o9 is schema composition in the Z schema calculus.We abbreviate pre(i1 o9 : : : o9 ik o9 AOp) to pre(ik o9 AOp) or prew AOp.Applicability can then be expressed as8 Ik � pre(ik o9 AOp) ^ Ret ` 9 Il � pre(i l o9 COp)Using the abbreviation prew AOp, where we note that we have replaced preAOpby the condition that AOp is applicable after a number of internal operations,applicability in weak re�nement reduces to8 Ik � prew AOp ^ Ret ` 9 Il � prew COp



CorrectnessFor correctness, we require the weak analogy to the following: if an abstractstate and a concrete state are related by Ret , and both the abstract and con-crete operations are guaranteed to terminate, then every possible state after theconcrete operation must be related by Ret 0 to a possible state after the abstractoperation [18]. For the weak version preAOp is replaced by prew AOp and we askthat, every possible state after the concrete operation must be related by Ret 0to a possible state after the abstract operation, except that now 'after' means anarbitrary number of internal operations may occur before and after the abstractoperation. The condition thus becomes, in full,8 Ik ; Ip ; Iq � pre(ik o9AOp) ^ Ret ^ ip o9 COp o9 iq `9 Im ; In ; Astate 0 � Ret 0 ^ in o9AOp o9 imwhich we abbreviate to8 Ik ; Ip ; Iq � prew AOp ^ Ret ^ COpw ` 9 Im ; In ; Astate 0 � Ret 0 ^ AOpwAgain the quanti�cation of the internal operations in COpw is important. Weneed to ensure is that every path involving COp and possible internal operationscan be matched by some path involving AOp and (possibly) internal operations.Hence the quanti�cation in COpw is universal over all sequences of internaloperations before and after COp.Rules for Internal operationsWe will also apply the applicability and correctness rules to internal operations.For internal operations we don't want applicability to prevent an internal op-eration becoming impossible where it was previously possible, indeed we wantto re�ne out such internal operations in appropriate fashions. So for an internaloperation I (de�ned on a state space state) we de�ne its weak pre-condition (notits pre-condition) byprew I = pre�state = stateAlthough this de�nition of the weak pre-condition for internal operationslooks strange, it does not allow us to arbitrarily weaken the pre-condition of aninternal operation under weak re�nement. The circumstances when we can aregoverned by what observable operations are present in the abstract speci�ca-tion, and the correctness rules for observable operations prevent the arbitraryweakening of pre-conditions of internal operations.Applicability for internal operations will reduce to checking that the concretestate is implied by the abstract state (modulo the retrieve relation).The �nal piece in the jigsaw is the meaning of correctness for internal oper-ations. We de�ne the weak version of an operation Op byOpw = � ik o9Op o9 i l for observable Op;ik for internal operation Op; k � 0



where i0 = �state and appropriate quanti�cation will be taken over k (and l)according to the context. This ensures that we can match up an occurrence of aninternal operation in the abstract speci�cation by zero (using �state) or more(using ik ) internal actions in the concrete speci�cation.Thus to summarise, weak re�nement requires that{ 8 Ik ; Cstate 0 � Cinitw ` 9 Il ; Astate 0 � Ainitw ^ Ret 0{ 8 Ik � prew AOp ^Ret ` 9 Il � prew COp{ 8 Ik ; Ip ; Iq � prew AOp ^ Ret ^ COpw ` 9 Im ; In ; Astate 0 � Ret 0 ^ AOpwwhereOpw = � ik o9Op o9 i l for observable Op;ik for internal operation Op; k � 0and i0 = �state and prew (Op) = pre(ik o9Op).In the next section we show how these rules are applied in practice, and weshall see that although the full generality introduces complexity, in practice theoverheads are not large.5 ExamplesWe apply the theory we developed above to the examples presented at the startof the paper. In the protocol example, the intuitive behaviour we wish to captureis that the sectional view is a re�nement of the external view, but that the thirdspeci�cation is not a re�nement of the sectional view. This is indeed the casewith weak re�nement.5.1 The Signalling ProtocolFirst we show the sectional view of the protocol is a weak re�nement of theexternal view. We �rst prove the initialization is correct, noting that the retrieverelation is total and functional, so that we can use the usual simpli�cation, andwe show that:8 Ik ; Ext 0; Section 0 � SectionInitw ^ Retrieve ` 9 Il � ExtInitwThis reduces to 8Ext 0; Section 0 � SectionInit^Retrieve ` ExtInit , since there areno internal operations in the external speci�cation, and no internal operation isapplicable after SectionInit in the sectional view. This can be veri�ed as normal.To verify applicability, we need to show that8 Ik � prew Transmit ^Retrieve ` 9 Il � prew STransmit8 Ik � prew Receive ^Retrieve ` 9 Il � prew SReceive8 Ik � prew �Ext ^ Retrieve ` 9 Il � prew Daemon



The last equation reduces to Ext ^ Section ` Section since Daemon is internaland for internal operations we have de�ned prew Daemon = �Section. In thecase of Transmit , the weak pre-condition requirement reduces topreTransmit ^ Retrieve ` 9 Il � pre(i l o9 STransmit)which is true with l = 0. A similar argument holds for the weak pre-conditionof Receive.Similarly, to verify correctness, we need to show that8 Ip ; Iq � preTransmit ^ Retrieve ^ STransmitw ^ Retrieve 0 ` Transmit8 Ip ; Iq � preReceive ^Retrieve ^ SReceivew ^ Retrieve 0 ` Receive8 Ip ; Iq � pre�Ext ^ Retrieve ^ Daemonw ^ Retrieve 0 ` �ExtFor the �rst, we need to check that occurrences of the Daemon operationbefore and after STransmit in the concrete speci�cation still leave us in a statethat is consistent with that produced by Transmit in the abstract. This is foundto be true (since Daemon ) �Ext). The second case is similar. For the thirdthis reduces to showing that8 k � Ext ^ Retrieve ^ Daemonk ^ Retrieve 0 ` �Extwhere Daemonk denotes k sequential compositions of Daemon. Again this isfound to be true.Therefore the sectional view is indeed a weak re�nement of the external view.Moreover, the additional veri�cation requirements imposed by the generality ofweak re�nement are not large in this example, being con�ned to the considerationof one internal operation - Daemon.We shall show now that the third speci�cation is not a weak re�nement ofthe sectional view. That is, we are not at liberty to weaken the pre-condition ofan internal operation arbitrarily. Consider the initialization rule that (for totalfunctional Retrieve):8 Ik ; Astate; Cstate � Cinitw ^Retrieve ` 9 Il � AinitwNow in the sectional view it is not possible to apply Daemon initially. However, itis possible to apply NDaemon initially (where it arbitrarily inserts a new elementinto the protocol). Thus for the third speci�cation to be a weak re�nement ofthe sectional view we require thatSectionInit o9 NDaemon ` SectionInitThis is clearly not true, since after NDaemon, ins is no longer empty.In addition to the initialization requirement failing in this example, the re-quirement that8 Ik ; Ip ; Iq � prew STransmit ^ Retrieve ^ STransmitw ^ Retrieve 0 `9 Im ; In � STransmitwis also violated for the same reasons as the initial condition fails.



5.2 Internal operations with outputIn the second example, presented in section 3.3, to show that the concrete is aweak re�nement of the abstract, we need to prove that:8 Ik � prew AOp ^ Ret ` 9 Il � prew COp8 Ik ; Ip ; Iq � prew AOp ^ Ret ^ COpw ` 9 Im ; In ; Astate 0 � Ret 0 ^ AOpwIn the re�nement we will simply link the states for which mode = 0 as the statemode = 1 was purely an intermediate state for the purposes of specifying thetemporal ordering of the operations. Hence the retrieve relation will be:RetStatemode = 0With this retrieve relation we will in fact show that the concrete operationCOp implements both abstract operations AOp and IOp. Since the concretespeci�cation does not have any internal operations we just need to show that:8 Ik � prew AOp ^ Ret ` preCOp8 Ik � prew AOp ^ Ret ^ COp ^ Ret 0 ` 9 Im ; In � AOpw8 Ik � prew IOp ^ Ret ` preCOp8 Ik � prew IOp ^ Ret ^ COp ^Ret 0 ` 9 Im ; In � IOpwWe can calculate the pre-conditions needed. Note that in the case of prew AOpthis includes states from which the system can perform an internal operationand then for AOp to successfully terminate.prew AOpStatemode = 0 _mode = 1 preCOpStatemode = 0The applicability and correctness for the implementation of AOp as COp arethen easily veri�ed. Consideration of the internal operation amounts to showingthat (because of the way the pre-condition of an internal operation is de�ned)Ret ` preCOpRet ^ COp ^ Ret 0 ` 9 k � IOpkand the latter holds for k = 0.So the concrete speci�cation is indeed a weak re�nement of the abstract. Thisillustrates an interesting aspect of specifying internal operations in Z - they canoutput data (in fact some interpretations of unobservableness in Z outlaw thispossibility e.g. [6], but generally this is the case). This is in contrast to a processalgebra where typically internal actions can have no data attributes.



Consider full LOTOS [2], where the internal action is written i . Internalactions in LOTOS can arise as a result of direct speci�cation or as a result ofhiding observable actions. In the �rst case, it is syntactically illegal to associatea data attribute with an internal action, e.g. the behaviouri !7; Bis not well-formed. Here action pre�x is represented by ; and a value declarationon an action is given by a !. In the second case, upon hiding an observableaction with data, the data is hidden as well as the action. So, for example, inthe behaviourhide g in g !5; stopthe transition i can be performed, but no data is associated with the occurrenceof the internal action i .However, it is desirable to be able to specify an internal event which does havedata associated with it. Indeed [19] contains an example of such an operation- an alarm noti�cation in a managed object. This is a typical example of thekind of application where it is necessary to be able to specify an atomic internaloperation which has output associated with it. Used in this style Z is moreexpressive than LOTOS in terms of internal events it can specify.Whether or not such an internal event is unobservable is debatable, andperhaps such events mark the di�erence between active systems as opposed toreactive systems - the latter often modelled using a process algebra. In an activesystem events can be under the control of the system but not the environment(e.g. an alarm operation), such events are internal but can have observable e�ects(such as an alarm noti�cation). This di�ers from the notion of internal in aprocess algebra, which equates internal with no observable transition, includingoutput. In such an interpretation the operation IOp de�ned above would not beinternal as we can observe its occurrence via its output, and the term active usedin [19] could be used instead. However, the theory of weak re�nement developedhere is equally applicable to such a class of events.6 Properties6.1 Reducing non-determinismAn important aspect of re�nement, in both the sequential and concurrent worlds,is the ability to strengthen an implementation by reducing the non-determinismin the abstract speci�cation. Indeed this is a property of standard Z re�nement inthe absence of internal operations. Adding internal operations in a speci�cationhas introduced an additional form of non-determinism into the language. Weshall see that weak-re�nement allows us to reduce this type of non-determinismby removing internal operations.Consider the behaviours described by the following transition diagrams, wherea and b are observable events, and i represents an internal operation:



a b

b

b

a

P

i

P

a

P

i i

1 2 3

These speci�cations are not equivalent in any sense, for example in a processalgebraic setting none of them are weak bisimulation equivalent. However, wewould like a re�nement to remove the non-determinism which is present in termsof the internal events, and for P1 to re�ne P2 which in turn re�nes P3. Indeed,seen as processes they are related in the sense that, for example, P1 red P2 redP3, where red is the LOTOS reduction relation [2].Weak re�nement, which we denote vw , also exhibits this property, that isP3 vw P2 vw P1, but P1 6vw P2 6vw P3. In terms of Z speci�cations we aregiving these diagrams their obvious interpretation, for example, a Z speci�cationof behaviour P2 would be given by (the internal operation here is i , all the othersare observable):Statestate : f0; 1; 2; 3g Init�Statestate 0 = 0a�Statestate = 1 ^ state 0 = 3 b�Statestate = 0 ^ state 0 = 2 i�Statestate = 0 ^ state 0 = 1A slightly more complex example is given by the two behaviours de�ned bythe following, where again the event i is internal and all others are observable.
a

b

a

QP

c c

i

Interpreted as Z speci�cations we �nd that P is a weak re�nement of Q .This example is interesting because by resolving the non-determinism, the im-plementation never o�ers the operation b. The retrieve relation which shows this



is a weak re�nement is given by the dotted lines in the above diagram. Becausepre b ^Ret has predicate which is false, b can be implemented by any operationin the concrete speci�cation (e.g. �State will do).Notice that, as one would hope, Q is not a weak re�nement of P , because wehave to quantify over all paths of internal operations in the concrete speci�cationin the correctness criteria for weak re�nement.6.2 Weak re�nement and re�nementIn speci�cations without internal operations, re�nement and weak re�nementclearly coincide. In the presence of internal operations, neither implies the other.Since our motivation in de�ning weak re�nement was to rule out some \re�ne-ments" of internal operations, re�nement doesn't imply weak re�nement (theprotocol speci�cations provided an example of this).However, neither does weak re�nement imply standard Z re�nement. The lastexample given above exhibits a weak re�nement (P is a weak re�nement of Q),which does not have a retrieve relation which will de�ne a standard re�nementbetween them.One desirable property that standard Z re�nement possesses is that it isa congruence. That is, if speci�cation S is re�ned by S 0, then in any contextC [:], C [S 0] re�nes C [S ]. A consequence of this is that operations can be re�nedindividually and the whole speci�cation is then a re�nement of the original.However, weak re�nement is not a congruence, due to the presence of internaloperations. To see this consider the two speci�cations given by the followingbehaviours:
a i

P

a

Q

Then under weak re�nement these are equivalent, i.e. P vw Q and Q vw P .However, if we add just one further operation to each speci�cation which isapplicable at the initial state, i.e. we specify the behaviour
a b b

a

i

P Q



then, as we observed earlier, Q is not a weak re�nement of P . So congruence islost with weak re�nement. Incidentally, this counter-example is the same examplethat shows weak bisimulation is not a congruence in a process algebra, so theresult here is not surprising and the ability to �nd observational relations whichare congruences can be non-trivial.7 ConclusionsThe motivation for this work arose out of our interest in the use of Z for thespeci�cation of distributed systems, and in particular its use within the OpenDistributed Processing (ODP) standardization initiative [12]. ODP is a jointstandardisation activity of the ISO and ITU. A reference model has been de�nedwhich describes an architecture for building open distributed systems. Centralto this architecture is a viewpoints model. This enables distributed systems to bedescribed from a number of di�erent perspectives. There are �ve viewpoints: en-terprise, information, computational, engineering and technology. Requirementsand speci�cations of an ODP system can be made from any of these viewpoints.Z and LOTOS are strong candidates for use in some of the ODP viewpoints, Z forthe information viewpoint and LOTOS for the computational and engineeringviewpoints.The use of di�erent viewpoints speci�ed in di�erent languages means we haveto have mechanisms to check for the consistency of speci�cations. One aspectof this work has been the development of means to check for the consistency oftwo Z speci�cations [1], and a means to translate LOTOS speci�cations into Z[9]. Development of viewpoints written in di�erent languages will be undertakenusing di�erent re�nement relations, and this led to the need to develop a notion ofweak-re�nement in Z which is related to re�nements in LOTOS. A full discussionof the relationships between the di�ering re�nement relations is given in [8](which incidentally assumes the �ring condition interpretation discussed above).Work related to that discussed here is that of Strulo in [19]. His proposalhas much greater simplicity than that discussed here, however, it perhaps lacksfull generality and involves a di�erent interpretation of the pre-condition of anoperation. Our aim here was to generalise standard Z re�nement to deal withinternal operations in a fully general manner, whilst maintaining the establishedinterpretation of operations in Z.References1. E. Boiten, J. Derrick, H. Bowman, and M. Steen. Consistency and re�nement forpartial speci�cation in Z. In M.-C. Gaudel and J. Woodcock, editors, FME'96:Industrial Bene�t of Formal Methods, Third International Symposium of FormalMethods Europe, volume 1051 of Lecture Notes in Computer Science, pages 287{306. Springer-Verlag, March 1996.2. T. Bolognesi and E. Brinksma. Introduction to the ISO Speci�cation LanguageLOTOS. Computer Networks and ISDN Systems, 14(1):25{59, 1988.



3. E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sabnani,editors, Protocol Speci�cation, Testing and Veri�cation, VIII, pages 63{74, AtlanticCity, USA, June 1988. North-Holland.4. E. Brinksma, G. Scollo, and C. Steenbergen. Process speci�cation, their imple-mentation and their tests. In B. Sarikaya and G. v. Bochmann, editors, ProtocolSpeci�cation, Testing and Veri�cation, VI, pages 349{360, Montreal, Canada, June1986. North-Holland.5. E. Cusack. Object oriented modelling in Z for Open Distributed Systems. InJ. de Meer, V. Heymer, and R. Roth, editors, IFIP TC6 International Workshopon Open Distributed Processing, pages 167{178, Berlin, Germany, September 1991.North-Holland.6. E. Cusack and G. H. B. Rafsanjani. ZEST. In S. Stepney, R. Barden, andD. Cooper, editors, Object Orientation in Z, Workshops in Computing, pages 113{126. Springer-Verlag, 1992.7. E. Cusack and C. Wezeman. Deriving tests for objects speci�ed in Z. In J. P.Bowen and J. E. Nicholls, editors, Seventh Annual Z User Workshop, pages 180{195, London, December 1992. Springer-Verlag.8. J. Derrick, H. Bowman, E. Boiten, and M. Steen. Comparing LOTOS and Z re-�nement relations. In FORTE/PSTV'96, pages 501{516, Kaiserslautern, Germany,October 1996. Chapman & Hall.9. J. Derrick, E.A.Boiten, H. Bowman, and M. Steen. Supporting ODP - translatingLOTOS to Z. In First IFIP International workshop on Formal Methods for OpenObject-based Distributed Systems, Paris, March 1996. Chapman & Hall.10. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.11. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.12. ITU Recommendation X.901-904 | ISO/IEC 10746 1-4. Open Distributed Pro-cessing - Reference Model - Parts 1-4, July 1995.13. L. Lamport. TLZ. In J.P. Bowen and J.A. Hall, editors, ZUM'94, Z User Work-shop, pages 267{268, Cambridge, United Kingdom, June 1994.14. P. Mataga and P. Zave. Formal speci�cation of telephone features. In J. P. Bowenand J. A. Hall, editors, Eighth Annual Z User Workshop, pages 29{50, Cambridge,July 1994. Springer-Verlag.15. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.16. G. H. B. Rafsanjani. ZEST - Z Extended with Structuring: A users's guide. Tech-nical report, BT, June 1994.17. S. Rudkin. Modelling information objects in Z. In J. de Meer, V. Heymer, andR. Roth, editors, IFIP TC6 International Workshop on Open Distributed Process-ing, pages 267{280, Berlin, Germany, September 1991. North-Holland.18. J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.19. B. Strulo. How �ring conditions help inheritance. In J. P. Bowen and M. G.Hinchey, editors, Ninth Annual Z User Workshop, LNCS 967, pages 264{275, Lim-erick, September 1995. Springer-Verlag.20. C. Wezeman and A. J. Judge. Z for managed objects. In J. P. Bowen and J. A.Hall, editors, Eighth Annual Z User Workshop, pages 108{119, Cambridge, July1994. Springer-Verlag.21. J. Woodcock and J. Davies. Using Z: Speci�cation, Re�nement, and Proof. Pren-tice Hall, 1996.This article was processed using the LATEX macro package with LLNCS style


