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Abstract. An important aspect in the specification of distributed sys-
tems is the role of the internal (or unobservable) operation. Such opera-
tions are not part of the user interface (i.e. the user cannot invoke them),
however, they are essential to our understanding and correct modelling of
the system. Various conventions have been employed to model internal
operations when specifying distributed systems in Z. If internal oper-
ations are distinguished in the specification notation, then refinement
needs to deal with internal operations in appropriate ways. However,
in the presence of internal operations, standard Z refinement leads to
undesirable implementations.

In this paper we present a generalization of Z refinement, called weak
refinement, which treats internal operations differently from observable
operations when refining a system. We illustrate some of the proper-
ties of weak refinement through a specification of a telecommunications
protocol.
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1 Introduction

Now the use of Z for the specification of sequential systems is gaining acceptance,
attention is being turned to new domains of applicability - one such example
is the use of Z for the specification of concurrent and distributed systems [5,
17, 14, 13, 19]. One aspect that is important in the specification of distributed
systems is the role of the internal (or unobservable) operation. Such operations
are not part of the user interface (i.e. the user cannot invoke them), however,
they are essential to our understanding and correct modelling of the system.
Internal operations (or actions) arise naturally in distributed systems, either
as a result of modelling concurrency or the non-determinism that is inherent
in a model of such a system. For example, internal operations can be used to
model communication (e.g. as in the language CCS [15]), non-determinism arises
as a by-product of this interpretation. Internal operations are also central to
abstraction specification through hiding, a particularly important example of

* This work was partially funded by British Telecom Research Labs., and the EPSRC
under grant number GR/K13035.



this is to enable communication to be internalised - a central facet in the design
of distributed systems.

Languages specifically targeted at concurrent systems typically have a notion
of internal action or operation built into the language. For example, internal op-
erations form a vital part of the theory of process algebras, and a special symbol
is reserved for the occurrence of such an internal event (e.g. 7 or 7). If an inter-
nal operation is distinguished in the specification notation, then refinement and
equivalence relations defined over the language need to deal with internal oper-
ations in appropriate ways. One way is to treat an internal event no differently
from observable events, an example of such a relation is strong bisimulation in a
process algebra [15]. However, it is well recognised that this is inappropriate as
a refinement relation, and that internal events should typically have a different
role within refinement and equivalence relations. Examples of relations in which
the observable is differentiated from the internal are weak bisimulation [15],
testing equivalence [3], reduction and extension [4], failures refinement [11] and
Hennessy’s testing pre-orders [10]. Central to these relations is the understand-
ing that internal events are unobservable, and that refinement relations must
refine the observable behaviour of a specification differently from its internal
behaviour.

A number of authors have adopted conventions for specifying internal opera-
tions when modelling systems in Z. In each case the internal operation is specified
as normal and either has a distinguished name or informal commentary telling
us that it is not part of the user interface. If internal operations appear explicitly
in a Z specification, we need to consider the possibility of refining these speci-
fications. How should we treat the refinement of internal operations in Z? We
seek here to contribute to the debate by making a proposal called weak refine-
ment. This has a similar relation to ordinary Z refinement as weak bisimulation
does to strong bisimulation in a process algebra. In particular, we define weak
refinement by considering the stand point of an external observer of the system,
who manipulates operations in the user interface.

Such an external observer will require that a retrieve relation is still defined
between the state spaces of the abstract and concrete specifications and that each
abstract observable operation AQp is recast as a concrete observable operation
COp. The weak refinement relation is defined to ensure that the observable be-
haviour of the concrete specification is a refinement of the observable behaviour
of the abstract specification.

Throughout the paper we assume the state plus operations style of Z speci-
fication, and our discussion takes place within that context.

The structure of the paper is as follows. In Section 2 we review the need for
internal operations in Z specifications. Section 3 presents an example of a specifi-
cation and refinement involving internal operations, the example illustrates that
standard Z refinement is too liberal in the presence of internal operations. Section
4 formulates the generalization that we call weak refinement, which is motivated
by the treatment of internal events in process algebras. Section 5 revisits the
protocol example to show that weak refinement has the required properties of



a refinement where internal operations have been specified. Section 6 discusses
some properties of this refinement, and we conclude in Section 7.

2 Internal Operations

When modelling sequential systems in Z, the operations represent the user inter-
face. That is, a state change occurs in the system if and only if the user invokes
one of the operations. However, when modelling concurrent and distributed sys-
tems it is convenient to model internal operations. These internal operations
represent operations over which the user has no control (hence the name inter-
nal). Since they are not part of the user interface they can be invoked by the
system (potentially non-deterministically) whenever their pre-conditions hold.
They can arise either due to the natural non-determinism of a distributed sys-
tem [11], or due to communication within the system [15] or due to some aspect
of the system being hidden at this level of abstraction [2]. The necessity for the
specification of internal events in process algebras is well recognised [15], and a
number of researchers have found it convenient or necessary to specify internal
operations in Z when specifying distributed systems [7, 16, 19, 21, 9]. In each
case the internal operation is specified as normal and either has a distinguished
name or informal commentary telling us that it is not part of the user interface.
We will see examples of both below. Used in this way, Z is clearly sufficient as a
notation for the specification of internal operations or actions.

Is this necessary however, why not leave internal operations to process alge-
bras? Well, Z is particularly suited to the specification of parts of a distributed
system which contain large amounts of state information. Typical to this class
are managed objects [20] or the information viewpoint of the Open Distributed
Processing reference model [12], where the specifications contain a lot of state
but there is also a need to model internal operations such as alarms.

Although Z is adequate as a notation for the specification of internal ac-
tions/operations, the usual Z refinement rules for operations are inappropriate
for specifications containing internal operations. As we shall see (at the end of
Section 3.2) they are inappropriate because they allow a refinement to contain
more non-determinism than is acceptable. This situation is clearly undesirable,
and we must re-formulate refinement for internal operations if they are to be
used in Z specifications. This is what we seek to do here.

3 Refinement

A 7 specification describes the state space together with a collection of opera-
tions. The Z refinement relation [18, 21], defined between two Z specifications,
allows both the state space and the individual operations to be refined in a
uniform manner.

Operation refinement is the process of recasting each abstract operation AOp
into a concrete operation COp, such that (informally) the following holds. The



pre-condition of COp may be weaker than the pre-condition of AOp, and COp
may have a stronger post-condition than AOp. That is, COp must be applicable
whenever AOp is, and if AOp is applicable, then every state which COp might
produce must be one of those which AOp might produce. Data refinement ex-
tends operation refinement by allowing the state space of the concrete operations
to be different from the state space of the abstract operations. Refinement for
sequential systems specified in Z is well documented and understood. How does
refinement behave in the presence of internal operations?

As an illustration of refinement involving internal operations we consider the
specification and refinement of a telecoms protocol (the Signalling System No. 7
standard) adapted from [21]. The first specification defines the external view of
the protocol, subsequently we develop a sectional view which specifies the route
that messages take through the protocol.

3.1 Specification 1: the external view

Let M be the set of messages that the protocol handles. The state of the sys-
tem comprises two sequences which represent messages that have arrived in the
protocol (in), and those that have been forwarded (out).

__FExt
in, out : seq M

ds:seq M e in =5 out

Incoming messages are added to the left of in, and the messages contained in in
but not in out represent those currently inside the protocol. The state invariant
specifies that the protocol must not corrupt or re-order. Initially, no messages
have been sent:

ExtInit = [Ext' | in' = ()]

Two operations then model the transmission ( Transmit) and reception (Receive)
of messages into and out of the protocol. Their specification is straightforward. In
the Receive operation, either no message is available (e.g. they are all on route in
the protocol) or the next one is output, this choice is made non-deterministically
at this level of abstraction.

_ Transmit
AExt
m?: M

in' = (m?) " in
out' = out




__ Receive
AEzxt

' = in
#Hout' = #Hout + 1V out’ = out

3.2 Specification 2: the sectional view

The sectional view specifies the route the messages take through a number of
sections. Let N be the number of sections. Each section in the route may receive
and send messages, and those which have been received but not yet sent on are in
the section. The messages pass through the sections in order. In the state schema,
ins ¢ represents the messages currently inside section i, rec ¢ the messages that
have been received by section i, and sent ¢ the messages that have been sent
onwards from section i. The state and initialization schemas are then given by

_ Section _ SectionInit
rec, ins, sent : seq(seq M) Section’
N = #rec = #ins = #sent Vi:1..N e
rec = Z’ns m Asent rec 7, = 7;”5 7, = sent 7, = <>
front sent = tail rec

where ~"denotes pairwise concatenation of the two sequences (so for every i
we have rec i = ins i 7~ sent ). The predicate front sent = tail rec ensures that
messages that are sent from one section are those that have been received by the
next. This specification also has operations to transmit and receive messages,
and they are specified as follows:

_ STransmit
ASection
m?: M

head rec’ = (m?) ™ (head rec)
tail rec’ = tail rec
sent’ = sent

__ SReceive
ASection

rec’ = rec

front ins' = front ins
last ins' = front(last ins)
front sent’ = front sent

last sent’ = (last(last ins)) ™ (last sent)




Here, the new message received is added to the first section in the route in
STransmit, and SReceive will deliver from the last section in the route. In the
first specification, messages arrive non-deterministically, in the sectional view
this is represented by the progress of the messages through the sections. There-
fore in this more detailed design, we need to specify how the messages progress
through the sections, and we do so by defining an operation Daemon which non-
deterministically selects a section to make progress. The oldest message is then
transfered to the following section, and nothing else changes. The important part
of this operation is then:

__Daemon
ASection
3i:1.N—1|

insi#£()e

ins'i = front(ins 1)
ins'(i + 1) = (last(ins 1)) " ins(i + 1)
Vi:1.N|j#iNj#i+1eins'j=1insj

Daemon is an internal operation (the informal commentary accompanying
the specification tells us this), and so can be invoked by the system whenever its
pre-condition holds. As noted in [21]: This operation is not part of the user inter-
face. The user cannot invoke Daemon, but it is essential to our understanding
of the system and to its correctness.

The sectional view is a refinement of the original, where the retrieve relation
(which is a total function, i.e. V Section & 3, Ext @ Retrieve) is given by:

__ Retrieve
FExt
Section

head rec = in
last sent = out

Under this refinement STransmit and SReceive correspond to Transmit and
Receive respectively, and the internal operation Daemon corresponds to the ex-
ternal operation = FEzt (i.e. the identity operation on Fxt), and we can prove

(with appropriate quantification over the states) the refinement by showing that:

SectionInit N\ Retrieve = ExtlInit

pre Transmit A Retrieve = pre STransmit

pre Transmit A Retrieve A STransmit A Retrieve’ = Transmit
pre Receive A Retrieve = pre SReceive

pre Receive A\ Retrieve A SReceive A Retrieve’ = Receive

pre = Fxt A Retrieve = pre Daemon

pre Z Ext A\ Retrieve A Daemon A Retrieve’ = Z Ext



So far so good. We can specify a system that contains non-determinism in
some of the operations in its user interface (e.g. Receive), but which doesn’t
contain any internal operations. We can then refine this specification to one that
contains internal operations that correctly model (in the sense of a refinement
existing) the abstract specification. Here we have used the standard Z refinement
relations, which have been perfectly adequate at this level.

However, we can refine this sectional view further. Consider the Daemon
operation. This operation is partial (as it does not specify what happens if
ins i = () for every i), and using standard Z refinement we can weaken its

3

pre-condition, and refine it to the following:

_ NDaemon
ASection
(Vi:1.N—-1leinsi=()=ins'l=(m)Ame M)V
(Fi:1.N—1]
ins i #£()e

ins'i = front(ins 1)
ins'(i + 1) = (last(ins 1)) " ins(i + 1)
Vj:1.N|j#iNj#i+1eins'j=insj)

This operation has the same functionality as before, except that in addition
the system can invoke it non-deterministically (since it is an internal opera-
tion) initially to insert an arbitrary message into the first section. Thus initially
there are two possible behaviours of the system: as before the user could in-
voke Transmit to insert a message into the protocol, or now the system could
non-deterministically invoke NDaemon which corrupts the input stream of the
protocol before the user has inserted any messages.

The specification which contains the sectional view operations together with
this new NDaemon is a refinement of the sectional view. Yet clearly implemen-
tations which introduce arbitrary amounts of noise into a stream of protocol
messages are unacceptable. But in this situation, using standard Z refinement
this has been allowed to happen, what has gone wrong?

We have used standard Z refinement here, and at issue is the refinement of
internal operations. Internal operations have behaviour which isn’t subject to
the normal interpretation of operations (that are in the user interface), so it is
not surprising then that using normal refinement brings about unexpected (and
undesirable) consequences.

3.3 The firing condition interpretation

One possible solution is described by Strulo in [19], which has the merit of
simplicity, but, as we shall see, perhaps constrains refinement too far. Strulo
calls internal operations active, and operations in the user interface passive. The

firing condition interpretation is the idea that the pre-condition states the only



times the operation can happen at all instead of saying an operation is undefined
(but possible) outside its pre-condition.

To define refinement, [19] identifies three regions for an operation (uncon-
strained, empty and interesting) and the applicability and correctness refinement
rules are then re-interpreted for internal operations as:

F COp = AOp
F (3 State’ o AOp) A (3 State' @ = AOp) =
(3 State' @ COp) A (3 State’ « = COp)

The three regions of an operation represent: (1) states where the operation is
divergent because no constraints are made on the after state (the unconstrained
region), (2) states outside the usual pre-condition but which aren’t divergent
(the empty region), and (3) the remaining states where some but not all after
states are allowed (the interesting region). For a full discussion the reader should
consult [19].

In terms of these interpretations and the regions of definition of an opera-
tion, the first condition prevents an operation becoming possible where it was
impossible, and the second condition ensures that the concrete operation doesn’t
become impossible where it was defined and possible.

Application of these ideas to the above example shows that with the firing
condition interpretation, NDaemon is not a refinement of Daemon. Thus we
successfully stop the pre-condition of an internal operation from being weakened
in an unacceptable manner. However, to achieve this a barrier has been placed
between observable and unobservable operation refinements. In particular, for
hybrid specifications (ones involving both internal and observable operations),
the refinement rules used depend on the type of operation - standard refinement
for observable operations, and the firing condition interpretation for internal
operations.

But the division is not always as simple as that, on occasion we may wish
to introduce internal operations during a refinement, or we may wish to remove
internal operations in a refinement. The refinement of the external view to the
sectional view is an example of the introduction of internal operations, and we
will give an example of their removal shortly.

However, we find that under the firing condition interpretation, the sec-
tional view is not a refinement of the external view of the protocol, because now
Daemon does not correspond to = Ezt under the firing condition interpretation
refinement rules. To overcome this, can we restrict the use of the firing condition
interpretation refinement rules to when the abstract operation is internal? The
following very simple example will illustrate that we cannot.

Consider an abstract specification with an operation AOp in the user in-
terface, and an internal operation IOp. The concrete specification consists of a
single operation COp. Both have state space State consisting of a mode : {0,1}.
Initially mode is set to 0. The only operations in the specifications are given by:



_AOp _10p
AState AState,
error! : yes | no

mode = 0 A mode' =1

mode =1 A mode' =0

error! = yes

__COp
AState,
error! : yes | no

mode = mode' = 0 A error! = yes

It is natural to view the concrete specification as a refinement of the abstract.
In the abstract, after invoking AOp an error message will occur (triggered by
the internal operation /0p happening non-deterministically, which it eventually
always will), in the concrete, after invoking COp an error message will occur.
This type of removal of internal events lies at the heart of all treatments of
internal operations in process algebras. However, under the firing condition in-
terpretation, the concrete operation is not a refinement of the abstract, because
no operation that was possible can become impossible - even if the internal be-
haviour has moved elsewhere. The fact that IOp has an output here is immaterial
to the essence of the example - the aspect of internal operations with output is
discussed in Section 5.2.

So, to summarise, standard Z refinement is too liberal in the presence of
internal operations. An alternative approach is that suggested in [19], however,
this involves a different interpretation of operations, and the refinement of inter-
nal behaviour can be too strict as the last example shows. In the next section we
will seek an alternative generalization of refinement that steers a middle course

by using ideas from process algebras.

4 Weak Refinement

To define weak refinement we will consider the standpoint of an external observer.
Such an external observer will require that a retrieve relation is still defined
between the state spaces of the abstract and concrete specifications and that each
observable operation AOp is recast as a concrete operation COp. The refinement
relation will ensure that the observable behaviour of the concrete specification
is a refinement of the observable behaviour of the abstract specification.

The weak refinement rules have the same form as standard refinement, namely
that:

— VI;; Cstate’ o Cinit,, = 31;; Astate’ o Ainit, N Ret’

— VI epre, AOp A Ret = 31; e pre,, COp



— VI Ip; I, e pre, AOp A Ret A COp, - 3 I,; I,,; Astate’ o Ret' A AOp,

except that the subscript w denotes a weak counterpart which we will define
below and I}, are sequences of internal operations. The next subsection reviews
the treatment of internal events in process algebras, and we use these ideas to
motivate our formulation of weak refinement in the following subsection.

4.1 Internal events in Process Algebras

Refinement in a process algebra is defined in terms of the transitions a behaviour
can undertake, and we write P - P’ if a process (or behaviour) P can perform
the action a and then evolve to the process P’. Refinements and equivalences are
given in terms of such transitions. For each relation, two versions are possible - a
strong relation which treats all actions identically whether observable or not, and
a weak version that makes allowances for internal events and is only concerned
with observable transitions.

To make allowances for internal actions, consideration is given to what is
meant, by an observable transition. An observable transition is taken to be
any observable action preceded or succeeded by any (finite) number of inter-
nal events.

Weak or observable relations now replace transitions P — P’ by their ob-
servable counterpart: P == P’, which means that process P can evolve to
process P’ by undergoing an unspecified (but finite) number of internal events,
followed by the action a, followed by an unspecified number of internal events.
Weak bisimulation (or observational equivalence) is an example of a relation
defined in such a fashion [15].

4.2 Formulating weak refinement

Throughout this subsection let the state spaces of the abstract and concrete
specifications be Astate and Cstate respectively. Let Ret be the retrieve relation
defined between the specifications. AOp and COp stand for operations on the
abstract and concrete state spaces where COp implements AOp. The initial
states are given by Cinit and Ainit.

Our formulation of weak refinement will be motivated by the approach taken
in process algebras. Application of an operation in 7 corresponds to a transition
in a process algebra, and in weak refinement in place of the application of an
operation Op we allow a finite number of internal operations before and after
the occurrence of the operation. This corresponds to the change from P % P’
to P == P’ in a process algebra when moving from a strong to observable
scenario. This can be described in the Z schema calculus by saying there exist

internal operations #,..., 4k, 5,...,5 (for k,1 > 0) and the application of the
composition 4 §...84 30p 37 §...375. Throughout this section we abbreviate
3. .90 to % and we will let I denote a sequence of internal actions (iy, . . ., ix).

We can now re-formulate each of the three conditions for refinement for a
system containing internal operations. We begin with the initialization condition.



Initialization

Without internal operations the relationship required upon initialization is that
each possible initial state of the concrete specification must represent a possible
initial state of the abstract specification. In the presence of internal operations
an initial state might evolve internally to another state. Therefore, “each possible
initial state of the concrete specification” now includes all possible evolutions of
the initial state under internal operations. Likewise “a possible initial state of
the abstract specification” can now include a potential evolution of the initial
state due to internal operations.
To formalise this (using the abbreviation i* =4 §...34;) we require that:

V Iy; Cstate' o Cinit §i* - 3 I;; Astate’ o Ainit $i' A Ret

The quantification of the internal operations in Cinit §i* is important. What
we wish to ensure is that every initial concrete path (including all possible inter-
nal operations) can be matched by some initial abstract path (possibly involving
internal operations). We abbreviate the condition to

V Ii; Cstate' o Cinit,, = 31;; Astate’ o Ainit,, A Ret’'

Applicability

Applicability must ensure that if an abstract and concrete state are related by
the retrieve relation, then the concrete operation should terminate whenever the
abstract operation terminated, where termination is usually expressed in terms
of satisfaction of the pre-condition of an operation. In the presence of internal
operations we must allow for potential invocation of internal operations, and
hence require that: if an abstract and concrete state are related by the retrieve
relation, then whenever the abstract operation terminates possibly after any
internal evolution then the concrete operation terminates after some internal
evolution.

This is described by saying there exists internal operations i, . .., i such that
pre(i §...9 ik § AOp) where § is schema composition in the Z schema calculus.
We abbreviate pre(ii §... 34 § AOp) to pre(i* § AOp) or pre,, AOp.

Applicability can then be expressed as

VI, e pre(i* § AOp) A Ret =31, e pre(it § COp)

Using the abbreviation pre, AOp, where we note that we have replaced pre AOp
by the condition that AOp is applicable after a number of internal operations,
applicability in weak refinement reduces to

VI, epre, AOp A Ret - 31; e pre,, COp



Correctness

For correctness, we require the weak analogy to the following: if an abstract
state and a concrete state are related by Ret, and both the abstract and con-
crete operations are guaranteed to terminate, then every possible state after the
concrete operation must be related by Ret' to a possible state after the abstract
operation [18]. For the weak version pre AOp is replaced by pre,, AOp and we ask
that, every possible state after the concrete operation must be related by Ret’
to a possible state after the abstract operation, except that now ’after’ means an
arbitrary number of internal operations may occur before and after the abstract
operation. The condition thus becomes, in full,

VI I; I, e pre(i* § AOp) A Ret A i? 3 COp §i7 F
I1,,; I,; Astate’ @ Ret' Ai" §AOp §i™

which we abbreviate to
VI; Ip; I, e pre,, AOp A Ret A COpyy &= 3 I1y; In; Astate’ o Ret' A AOp,,

Again the quantification of the internal operations in COp,, is important. We
need to ensure is that every path involving COp and possible internal operations
can be matched by some path involving AOp and (possibly) internal operations.
Hence the quantification in COp,, is universal over all sequences of internal
operations before and after COp.

Rules for Internal operations

We will also apply the applicability and correctness rules to internal operations.
For internal operations we don’t want applicability to prevent an internal op-
eration becoming impossible where it was previously possible, indeed we want
to refine out such internal operations in appropriate fashions. So for an internal
operation I (defined on a state space state) we define its weak pre-condition (not
its pre-condition) by

pre,, I = pre Z'state = state

Although this definition of the weak pre-condition for internal operations
looks strange, it does not allow us to arbitrarily weaken the pre-condition of an
internal operation under weak refinement. The circumstances when we can are
governed by what observable operations are present in the abstract specifica-
tion, and the correctness rules for observable operations prevent the arbitrary
weakening of pre-conditions of internal operations.

Applicability for internal operations will reduce to checking that the concrete
state is implied by the abstract state (modulo the retrieve relation).

The final piece in the jigsaw is the meaning of correctness for internal oper-
ations. We define the weak version of an operation Op by

Op. — i* 2 Op g i! for observable Op,
Puw = ik for internal operation Op,k > 0



where i® = Zstate and appropriate quantification will be taken over k (and 1)

according to the context. This ensures that we can match up an occurrence of an
internal operation in the abstract specification by zero (using =state) or more
(using i*) internal actions in the concrete specification.

Thus to summarise, weak refinement requires that
— VI;; Cstate' o Cinit,, = 31;; Astate’ o Ainit, N Ret’
~ VI, epre, AOp A Ret = 31; e pre,, COp
— V1i; Iy; I, epre, AOp A Ret A COpyy = 3 Iy; I,; Astate’ o Ret’ N AOp,,
where

Op. — i* 2 Op g i! for observable Op,
Puw =9 for internal operation Op,k > 0

and ¥ = Estate and pre,, (Op) = pre(i* 3 Op).

In the next section we show how these rules are applied in practice, and we
shall see that although the full generality introduces complexity, in practice the
overheads are not large.

5 Examples

We apply the theory we developed above to the examples presented at the start
of the paper. In the protocol example, the intuitive behaviour we wish to capture
is that the sectional view is a refinement of the external view, but that the third
specification is not a refinement of the sectional view. This is indeed the case
with weak refinement.

5.1 The Signalling Protocol

First we show the sectional view of the protocol is a weak refinement of the
external view. We first prove the initialization is correct, noting that the retrieve
relation is total and functional, so that we can use the usual simplification, and
we show that:

V Ii; Ext'; Section' e Sectionlnit, A Retrieve - 31, o ExtInit,

This reduces to V Ext'; Section’ e SectionInitARetrieve & ExtInit, since there are

no internal operations in the external specification, and no internal operation is

applicable after SectionInit in the sectional view. This can be verified as normal.
To verify applicability, we need to show that

V I}, e pre, Transmit A Retrieve - 3 1; o pre  STransmit
V I}, e pre, Receive A\ Retrieve - 31; e pre,  SReceive
VI e pre,, = Ext A Retrieve - 3 1) e pre,, Daemon



The last equation reduces to Ext A Section - Section since Daemon is internal
and for internal operations we have defined pre, Daemon = ZSection. In the
case of Transmit, the weak pre-condition requirement reduces to

pre Transmit A Retrieve - 3 1) » pre(i! § STransmit)

which is true with [ = 0. A similar argument holds for the weak pre-condition
of Receive.
Similarly, to verify correctness, we need to show that

YV I,; I,  pre Transmit A Retrieve A STransmit,, A Retrieve’ = Transmit
V I,; I, e pre Receive A Retrieve A SReceive,, N Retrieve’' - Receive
YV I,; I, e pre ZFzt A Retrieve A Daemon,, A Retrieve' b Z FExt

For the first, we need to check that occurrences of the Daemon operation
before and after STransmit in the concrete specification still leave us in a state
that is consistent with that produced by Transmit in the abstract. This is found
to be true (since Daemon = = Faxt). The second case is similar. For the third
this reduces to showing that

YV k o Ext A Retrieve A Daemon®* A Retrieve' - = Eat

where Daemon® denotes k sequential compositions of Daemon. Again this is
found to be true.

Therefore the sectional view is indeed a weak refinement of the external view.
Moreover, the additional verification requirements imposed by the generality of
weak refinement are not large in this example, being confined to the consideration
of one internal operation - Daemon.

We shall show now that the third specification is not a weak refinement of
the sectional view. That is, we are not at liberty to weaken the pre-condition of
an internal operation arbitrarily. Consider the initialization rule that (for total
functional Retrieve):

V I,; Astate; Cstate o Cinit, N\ Retrieve - 31, o Ainity,

Now in the sectional view it is not possible to apply Daemon initially. However, it
is possible to apply NDaemon initially (where it arbitrarily inserts a new element
into the protocol). Thus for the third specification to be a weak refinement of
the sectional view we require that

SectionInit § NDaemon + SectionInit

This is clearly not true, since after NDaemon, ins is no longer empty.
In addition to the initialization requirement, failing in this example, the re-
quirement that

VIy; I,; 1, e pre, STransmit A\ Retrieve A STransmit,, N\ Retrieve' -
d1,; I, e STransmit,,

is also violated for the same reasons as the initial condition fails.



5.2 Internal operations with output

In the second example, presented in section 3.3, to show that the concrete is a
weak refinement of the abstract, we need to prove that:

VI, epre, AOp A Ret - 31; e pre,, COp
VI I,; I, epre,, AOp A Ret A COpy, & 315 I,; Astate’ o Ret' A AOp,

In the refinement we will simply link the states for which mode = 0 as the state
mode = 1 was purely an intermediate state for the purposes of specifying the
temporal ordering of the operations. Hence the retrieve relation will be:

_ Ret
State

mode = 0

With this retrieve relation we will in fact show that the concrete operation
COp implements both abstract operations AOp and IOp. Since the concrete
specification does not have any internal operations we just need to show that:

VI e pre,, AOp A Ret - pre COp

VI, epre, AOp A Ret A COp A Ret' & 31,5 I, @ AOp,,
VI e pre, I0p A Ret + pre COp

VI, epre, I0p A Ret A COp A Ret' = 31,,; I,, @ IOp,,

We can calculate the pre-conditions needed. Note that in the case of pre, AOp
this includes states from which the system can perform an internal operation
and then for AOp to successfully terminate.

—pre, AOp _pre COp
State State
mode = 0V mode = 1 mode = ()

The applicability and correctness for the implementation of AOp as COp are
then easily verified. Consideration of the internal operation amounts to showing
that (because of the way the pre-condition of an internal operation is defined)

Ret - pre COp
Ret A COp A Ret' - 3k o I0p*

and the latter holds for & = 0.

So the concrete specification is indeed a weak refinement of the abstract. This
illustrates an interesting aspect of specifying internal operations in Z - they can
output data (in fact some interpretations of unobservableness in Z outlaw this
possibility e.g. [6], but generally this is the case). This is in contrast to a process
algebra where typically internal actions can have no data attributes.



Consider full LOTOS [2], where the internal action is written i. Internal
actions in LOTOS can arise as a result of direct specification or as a result of
hiding observable actions. In the first case, it is syntactically illegal to associate
a data attribute with an internal action, e.g. the behaviour

i'T; B

is not well-formed. Here action prefix is represented by ; and a value declaration
on an action is given by a !. In the second case, upon hiding an observable
action with data, the data is hidden as well as the action. So, for example, in
the behaviour

hide g in ¢!5; stop

the transition 4 can be performed, but no data is associated with the occurrence
of the internal action i.

However, it is desirable to be able to specify an internal event which does have
data associated with it. Indeed [19] contains an example of such an operation
- an alarm notification in a managed object. This is a typical example of the
kind of application where it is necessary to be able to specify an atomic internal
operation which has output associated with it. Used in this style Z is more
expressive than LOTOS in terms of internal events it can specify.

Whether or not such an internal event is unobservable is debatable, and
perhaps such events mark the difference between active systems as opposed to
reactive systems - the latter often modelled using a process algebra. In an active
system events can be under the control of the system but not the environment
(e.g. an alarm operation), such events are internal but can have observable effects
(such as an alarm notification). This differs from the notion of internal in a
process algebra, which equates internal with no observable transition, including
output. In such an interpretation the operation IOp defined above would not be
internal as we can observe its occurrence via its output, and the term active used
in [19] could be used instead. However, the theory of weak refinement developed
here is equally applicable to such a class of events.

6 Properties

6.1 Reducing non-determinism

An important aspect of refinement, in both the sequential and concurrent worlds,
is the ability to strengthen an implementation by reducing the non-determinism
in the abstract specification. Indeed this is a property of standard Z refinement in
the absence of internal operations. Adding internal operations in a specification
has introduced an additional form of non-determinism into the language. We
shall see that weak-refinement allows us to reduce this type of non-determinism
by removing internal operations.

Consider the behaviours described by the following transition diagrams, where
a and b are observable events, and i represents an internal operation:



NN AN

These specifications are not equivalent in any sense, for example in a process
algebraic setting none of them are weak bisimulation equivalent. However, we
would like a refinement to remove the non-determinism which is present in terms
of the internal events, and for P; to refine P, which in turn refines P3. Indeed,
seen as processes they are related in the sense that, for example, P; red P, red
P35, where red is the LOTOS reduction relation [2].

Weak refinement, which we denote C,,, also exhibits this property, that is
pP;C, P, Ty Py, but Py Z,, P Z,, P3. In terms of Z specifications we are
giving these diagrams their obvious interpretation, for example, a Z specification
of behaviour P, would be given by (the internal operation here is i, all the others
are observable):

State _ Init
listate :{0,1,2,3} AState
state’ =0
I o g
AState AState AState

state = 1 A state’ =3 | state = 0 A state’ =2 | state = O A state’ =1

A slightly more complex example is given by the two behaviours defined by
the following, where again the event ¢ is internal and all others are observable.

P Q
—————
-
- \\

|
[T N

~
~
~
~
~—_

a

Interpreted as Z specifications we find that P is a weak refinement of ().
This example is interesting because by resolving the non-determinism, the im-
plementation never offers the operation b. The retrieve relation which shows this



is a weak refinement is given by the dotted lines in the above diagram. Because
pre b A Ret has predicate which is false, b can be implemented by any operation
in the concrete specification (e.g. = State will do).

Notice that, as one would hope, () is not a weak refinement of P, because we
have to quantify over all paths of internal operations in the concrete specification
in the correctness criteria for weak refinement.

6.2 Weak refinement and refinement

In specifications without internal operations, refinement and weak refinement
clearly coincide. In the presence of internal operations, neither implies the other.
Since our motivation in defining weak refinement was to rule out some “refine-
ments” of internal operations, refinement doesn’t imply weak refinement (the
protocol specifications provided an example of this).

However, neither does weak refinement imply standard Z refinement. The last
example given above exhibits a weak refinement (P is a weak refinement of @),
which does not have a retrieve relation which will define a standard refinement
between them.

One desirable property that standard Z refinement possesses is that it is
a congruence. That is, if specification S is refined by S’, then in any context
C[.], C[S'] refines C[S]. A consequence of this is that operations can be refined
individually and the whole specification is then a refinement of the original.

However, weak refinement is not a congruence, due to the presence of internal
operations. To see this consider the two specifications given by the following
behaviours:

P Q

Then under weak refinement these are equivalent, i.e. P C,, @ and Q C,, P.
However, if we add just one further operation to each specification which is
applicable at the initial state, i.e. we specify the behaviour



then, as we observed earlier, ) is not a weak refinement of P. So congruence is
lost with weak refinement. Incidentally, this counter-example is the same example
that shows weak bisimulation is not a congruence in a process algebra, so the
result here is not surprising and the ability to find observational relations which
are congruences can be non-trivial.

7 Conclusions

The motivation for this work arose out of our interest in the use of Z for the
specification of distributed systems, and in particular its use within the Open
Distributed Processing (ODP) standardization initiative [12]. ODP is a joint
standardisation activity of the ISO and I'TU. A reference model has been defined
which describes an architecture for building open distributed systems. Central
to this architecture is a viewpoints model. This enables distributed systems to be
described from a number of different perspectives. There are five viewpoints: en-
terprise, information, computational, engineering and technology. Requirements
and specifications of an ODP system can be made from any of these viewpoints.
7 and LOTOS are strong candidates for use in some of the ODP viewpoints, Z for
the information viewpoint and LOTOS for the computational and engineering
viewpoints.

The use of different viewpoints specified in different languages means we have
to have mechanisms to check for the consistency of specifications. One aspect
of this work has been the development of means to check for the consistency of
two Z specifications [1], and a means to translate LOTOS specifications into Z
[9]. Development of viewpoints written in different languages will be undertaken
using different refinement relations, and this led to the need to develop a notion of
weak-refinement in Z which is related to refinements in LOTOS. A full discussion
of the relationships between the differing refinement relations is given in [§]
(which incidentally assumes the firing condition interpretation discussed above).

Work related to that discussed here is that of Strulo in [19]. His proposal
has much greater simplicity than that discussed here, however, it perhaps lacks
full generality and involves a different interpretation of the pre-condition of an
operation. Our aim here was to generalise standard Z refinement to deal with
internal operations in a fully general manner, whilst maintaining the established
interpretation of operations in Z.
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