Skip to main content

A stochastic simple similarity

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1446))

Included in the following conference series:

Abstract

This paper continues a previous work using stochastic heuristics to extract and exploit knowledge with no size restrictions, with polynomial complexity.

A simplified relational framework is described; within this framework, one basic learning component, the generalization operator, is reconsidered.

Stochastic heuristics are combined with Plotkin's least general generalization to derive a stochastic generalization operator and a simple stochastic similarity function with controllable complexity. Preliminary experiments on the well-studied mutagenesis problem (regression-friendly and regression-unfriendly datasets) demonstrate the potential and the limitations of this similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bisson. KBG: A knowledge base generalizer. In B. Porter and R. Mooney, editors, Proceedings of the 7th International Conference on Machine Learning, pages 9–15. Morgan Kaufmann, 1990.

    Google Scholar 

  2. G. Bisson.Learning in FOL with a similarity measure. In Proceedings of 10th AAAI, 1992.

    Google Scholar 

  3. D. Dolsak and S. Muggleton. The application of ILP to finite element mesh design. In S. Muggleton, editor, Proceedings of the first International Workshop on Inductive Logic Programming, pages 453–472, 1991.

    Google Scholar 

  4. R.O. Duda and P.E. Hart. Pattern Classification and scene analysis. John Wiley and sons, Menlo Park, CA, 1973.

    Google Scholar 

  5. W. Emde and D. Wettscherek. Relational instance based learning. In L. Saitta, editor, Proceedings of the 13th International Conference on Machine Learning, pages 122–130, 1996.

    Google Scholar 

  6. R.D. King, A. Srinivasan, and M.J.E. Sternberg. Relating chemical activity to structure: an examination of ILP successes. New Gen. Comput., 13, 1995.

    Google Scholar 

  7. Y. Kodratoff and J.-G. Ganascia. Improving the generalization step in learning. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: an artificial intelligence approach, volume 2, pages 215–244. Morgan Kaufmann, 1986.

    Google Scholar 

  8. R. Kohavi and G.H. John. Automatic parameter selection by minimizing estimated error. In A. Prieditis and S. Russell, editors, Proceedings of ICML-95, International Conference on Machine Learning, pages 304–312. Morgan Kaufmann, 1995.

    Google Scholar 

  9. R.S. Michalski. A theory and methodology of inductive learning. In R.S Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: an artificial intelligence approach, volume 1, pages 83–134. Morgan Kaufmann, 1983.

    Google Scholar 

  10. R. Mooney. ILP for natural language processing. In S. Muggleton, editor, Inductive Logic Programming, ILP96 — Selected papers. Springer-Verlag LNAI 1314, 1997.

    Google Scholar 

  11. S. Muggleton. Inductive logic programming. In S. Muggleton, editor, Inductive Logic Programming. Academic Press, 1992.

    Google Scholar 

  12. S. Muggleton. Inverse entailment and PROGOL. New Gen. Comput., 13:245–286, 1995.

    Google Scholar 

  13. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19:629–679, 1994.

    Google Scholar 

  14. G. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5. Edinburgh University Press, 1970.

    Google Scholar 

  15. J.R. Quinlan. Learning logical definition from relations. Machine Learning, 5:239–266, 1990.

    Google Scholar 

  16. L. De Raedt. Induction in logic. In Proceedings of 3nd International Workshop on Multistrategy Learning, pages 29–38. AAAI Press, 1996.

    Google Scholar 

  17. C. Rouveirol. Flattening and saturation: Two representation changes for generalization. Machine Learning, 14:219–232, 1994.

    Google Scholar 

  18. T. Scheffer and R. Herbrich. Unbiased assessment of learning algorithms. In Proceedings of IJCAI-97, pages 798–803. Morgan Kaufmann, 1997.

    Google Scholar 

  19. M. Sebag and C. Rouveirol. Tractable induction and classification in FOL. In Proceedings of IJCAI-97, pages 888–892. Morgan Kaufmann, 1997.

    Google Scholar 

  20. A. Srinivasan. The predictive toxicology evaluation challenge. In Proceedings of IJCAI 97, pages 4–8. Morgan Kaufmann, 1997.

    Google Scholar 

  21. A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for mutagenicity: a study in first order and feature-based induction. Artificial Intelligence, 85:277–299, 1996.

    Google Scholar 

  22. D. Wettscherek and T.G. Dietterich. An experimental comparison of the nearest-neighbor and nearest hyperrectangle algorithms. Machine Learning, 19:5–27, 1995. *** DIRECT SUPPORT *** A0008D21 00004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David Page

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sebag, M. (1998). A stochastic simple similarity. In: Page, D. (eds) Inductive Logic Programming. ILP 1998. Lecture Notes in Computer Science, vol 1446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027313

Download citation

  • DOI: https://doi.org/10.1007/BFb0027313

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64738-6

  • Online ISBN: 978-3-540-69059-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics