Abstract
We present a sound, complete, modular and lean labelled tableau calculus for many propositional modal logics where the labels contain “free” and “universal” variables. Our “lean” Prolog implementation is not only surprisingly short, but compares favourably with other considerably more complex implementations for modal deduction.
On leave from University of Karlsruhe, Institute for Logic, Complexity and Deduction Systems, D-76128 Karlsruhe, Germany.
Preview
Unable to display preview. Download preview PDF.
References
B. Beckert and R. Goré. Free variable tableaux for propositional modal logics. Interner Bericht 41/96, Universität Karlsruhe, Fakultät für Informatik, 1996.
B. Beckert, R. Hähnle, P. Oel, and M. Sulzmann. The tableau-based theorem prover 3 T A P, version 4.0. In Proc. CADE-13, LNCS 1104. Springer, 1996.
B. Beckert and J. Posegga. leanT A P: Lean tableau-based deduction. Journal of Automated Reasoning, 15(3):339–358, 1995.
E. Bencivenga. Free logic. In D. Gabbay and F. Günthner, editors, Handbook of Philosophical Logic, volume 3. Kluwer, Dordrecht, 1986.
M. D'Agostino, D. Gabbay, and A. Russo. Grafting modalities onto substructural implication systems. Studia. Logica, 1996. To appear.
M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of Synthese Library. D. Reidel, Dordrecht, Holland, 1983.
M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, second edition, 1996.
M. Fitting. Leantap revisited. Draft Manuscript, Jan. 1996.
A. Frisch and R. Scherl. A general framework for modal deduction. In J. Allen, R. Fikes, and E. Sandewall, editors, Proc. 2nd Conference on Principles of Knowledge Representation and Reasoning. Morgan-Kaufmann, 1991.
D. Gabbay. Labelled Deductive Systems. Oxford University Press, 1996.
R. Goré. Tableau methods for modal and temporal logics. In M. D'Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, chapter 7. Kluwer, Dordrecht, 1997. To appear.
G. Governatori. A reduplication and loop checking free proof system for S4. In Short Papers: TABLEAUX'96, number 154-96 in RI-DSI, Via Comelico 39, 20135 Milan, Italy, 1996. Department of Computer Science, University of Milan.
A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward proof search in some non-classical logics. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Proc. TABLEAUX'96, LNCS 1071. Springer, 1996.
P. Jackson and H. Reichgelt. A general proof method for first-order modal logic. In 9th Int. Joint Conference on Artificial Intelligence, pages 942–944, 1987.
S. Kanger. Provability in Logic. Stockholm Studies in Philosophy, University of Stockholm. Almqvist and Wiksell, Sweden, 1957.
R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A high-performance theorem prover. Journal of Automated Reasoning, 8(2):183–212, 1992.
F. Massacci. Strongly analytic tableaux for normal modal logics. In A. Bundy, editor, Proc, CADE-12, LNCS 814. Springer, 1994.
G. Mints. A Short Introduction to Modal Logic. CSLI, Stanford, 1992.
S. Reeves. Semantic tableaux as a framework for automated theorem-proving. In C. Mellish and J. Hallam, editors, Advances in Artificial Intelligence. Wiley, 1987.
A. Russo. Generalising propositional modal logic using labelled deductive systems. In F. Baader and K. Schulz, editors, Proceedings FroCoS. Kluwer, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beckert, B., Goré, R. (1997). Free variable tableaux for propositional modal logics. In: Galmiche, D. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 1997. Lecture Notes in Computer Science, vol 1227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027407
Download citation
DOI: https://doi.org/10.1007/BFb0027407
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62920-7
Online ISBN: 978-3-540-69046-7
eBook Packages: Springer Book Archive