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Abstract. In this paper several conceptual extensions to the theory
of order-restricted free variable clausal tableaux which was initiated in

[9, 8] are presented: atom orderings are replaced by the more general

concept of a selection function, the substitutivity condition required for
lifting is for certain variants of the calculus replaced by a much weaker

assumption, and a �rst version of order-restricted tableaux with theories

is introduced. The resulting calculi are shown to be sound and complete.
We report on �rst experiments made with a prototypical implementa-

tion and indicate for which classes of problems order-restricted tableaux

calculi are likely to be bene�cial.

1 Introduction

In this paper we continue to develop the theory of order-restricted free variable

clausal tableaux which was initiated in [9, 8].

A-ordered tableaux (full de�nitions of all notions are given in Section 2 and 3)

are regular clause tableaux with two di�erent kinds of extension steps: given an

A-ordering [6] � on literals, a clause C can be used to extend a tableau branch

B i� (i) C has a maximal connection into B, i.e. the connection literal of C is

�-maximal in C or (ii) C has a maximal connection into another clause D, i.e.

the connection literals of both clauses are �-maximal in the clause, where they

occur.

On the one hand we present several conceptual extensions of ordered tab-

leaux: in Section 4 atom orderings are replaced by the more general concept of

a selection function; in Section 5 we demonstrate how such calculi can be im-

plemented with the help of constraints; for a somewhat less restrictive class of

calculi we show that the substitutivity condition required for lifting can be re-

placed by a much weaker assumption: stability wrt variable renaming is already

su�cient for completeness. The resulting calculus, called tableaux with input se-

lection function is shown to be complete.

Finally, a �rst version of tableaux with selection function and theories is

presented (Section 6.1).

On the other hand, in Section 7 we report our experiences made with a

prototypical implementation. We indicate for which classes of problems order-

restricted tableaux calculi are likely to be bene�cial.
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On a methodological level we compare tableaux with selection function to

restart model elimination, recently developed by Baumgartner & Furbach [3]

(Section 6.2).

2 Preliminaries

Given a signature �, i.e. a set of predicate, function, constant and variable

symbols, then atoms and literals are constructed from � and the negation

sign : as usual. The set of all literals for � is denoted by L� . We omit the index

� if no confusion can arise.

We denote substitutions by �; � , or write them explicitly as a (�nite) set

� = fx1  t1; : : : ; xn  tng with the meaning �(xi) = ti and �(x) = x for all

x 6= xi. The special case of a variable renaming (all ti are distinct variables)

is denoted by �. We use such substitutions only for replacing the variables of a

clause by new distinct variables.

A clause is a sequence L1_ : : :_Ln; n � 1 of disjunctively connected literals.

The variables in such clauses are assumed to be (implicitly) universally quanti-

�ed. An instance of a clause C is a sequence of literals C� such that � replaces

the variables of C by new variables. The variables of instances of clauses are only

placeholders for terms, they are not assumed to be universally quanti�ed. C is

the set of all clauses. We write L 2 C for short if a literal L occurs in a clause C.

L is the complement of a literal L, i.e. A = :A and :A = A if A is an atom.

Atom selects the atomic part of literals that is Atom(A) = Atom(:A) = A for

every atom A.

A clause tableau T is an ordered tree where the root node is labeled with

true or a literal and all other nodes are labeled with literals. For a node n of

T the clause ClauseOf(n) is constructed from the literals of the children of n

in the order from left to right. Predecessor(n) denotes the parent node of node

n. A path from the root node to a leaf literal of T is called a branch of T. A

tableau is closed if every branch contains (at least) two complementary literals.

We sometimes describe a tableau as a �nite set of branches and a branch as a

�nite set of literals. We also often identify branches with the set of literals on

them. A branch B is said to be regular if (i) every literal of a node of B occurs

only once on B and (ii) ClauseOf(n) is not a tautology for every node n of B.

A tableau T is regular if all branches of T are regular.

Partial Interpretations are associated with a consistent set of ground lit-

erals. An interpretation I satis�es a ground clause C i� there exists L 2 C with

L 2 I. I is said to be a model for a set S of �rst order clauses i� I satis�es all

clauses of every ground instance of S.

3 A-Ordered Tableaux

To ease comparison with previous results in this section we brie
y rehash A-

ordered clausal ground tableaux as de�ned in [8].



De�nition1. An A-ordering is a binary relation �A on atoms, such that for

all atoms A, B, C:

1. A 6� A (irre
exivity),

2. A �A B and B �A C implies A �A C (transitivity), and

3. A �A B implies A� �A B� for all substitutions � (substitutivity).

For sake of readability we focus on the ground version of A-ordered tableaux.

Lifting to �rst order logic is handled in Section 5 in the context of tableaux

with selection function. The results established there hold as well for A-ordered

tableaux. As in ordered resolution connections between clauses are restricted to

literals that occur �A-maximally.

De�nition2. A literal Lj occurs �A-maximally in a clause L1 _ : : : _ Ln i�

Atom(Lj) 6�A Atom(Li) for all i = 1; : : : ; n.

A clause C = L1 _ : : : _ Ln possesses a �A-maximal connection to a

clause C0 = L
0

1 _ : : :_ L
0

n0
i� Li = L

0

j
for some 1 � i � n; 1 � j � n

0, Li occurs

maximally in C, and L0
j
occurs maximally in C0. If, moreover, C;C0 2 S then C

is called a restart clause of S.

A clause C has a maximal connection into a set of literals B i� C has

a maximal connection to a literal of B.

A-ordered tableaux are regular2 clause tableaux with the additional restric-

tion that a clause C 2 S can be used to extend a branch B only if C has a

maximal connection into B or to another clause of S:

De�nition3. An A-ordered ground clause tableau is a regular ground

clause tableau T such that

1. C = ClauseOf(n) has a maximal connection into the branch ending in n or

2. C is a restart clause of S.

At the start of a refutation the initial tableau is empty and only the second

extension rule (called restart rule) can be used to expand it. But even if a

relevant clause for the initial step is used, it is still necessary to allow restarts

later on to obtain a complete calculus, as the following example shows:

Example 1.

Take the unsatis�able clause set M = true

A

:A C

:A :C

B

A

:A C

:A :C

:B

Fig. 1. Restarts are necessary

fA_B; A _:B; :A_C; :A _:Cg
and A-ordering A < B < C (maximal

literals are underlined). Each clause of

M is a restart clause. Fig. 1 shows a

closed A-ordered tableau for M . The

solid lines correspond to a (maximal)

extension step: these branches can be closed immediately with the maximal

literal of the maximal connected clause. The dashed arrows indicate a reduction

step, i.e. the branch is closed by non maximal literals of a clause.

2 Regularity and ordering restrictions are orthogonal concepts, but we choose to start

out from regular tableaux, because regularity �ts naturally into our completeness

proof below. All results do still hold, of course, if regularity is dropped.



Note that without a second application of the restart rule no closed A-ordered

tableau for M can be constructed, independently of the choice of clause for the

initial step.

Theorem4 [9]. For any unsatis�able set S of ground clauses and A-ordering

�A exists a closed �A-ordered tableau for S.

In the ground case the procedure stays complete even if restart steps are

delayed until no extension steps are possible.

The �rst order case is handled as usual with Herbrand's Theorem and a

lifting lemma which, by substitutivity of �A, is straightforward. In Section 5 we

will see that lifting is even possible under a weaker assumption.

L-orderings (and L-ordered tableaux) are de�ned exactly as A-orderings,

but on literals instead of atoms. Hence, each A-ordering is also an L-ordering, but

not vice versa. It is easy to show that the previous theorem holds for L-orderings

as well.

4 Tableaux with Selection Function

In this section we still work with ground clauses. The �rst order case is considered

in the following section.

As shown in the previous section, in ordered tableaux only the literals which

are maximal wrt the clause in which they occur need to be considered for an

extension step. This kind of restriction can be generalized with the help of certain

functions.

Each A-ordering �A induces a function f�A : C! (2L� f;g) by stipulating
f�A(C) = fLjL is �A-maximal in Cg. On the other hand, not every function f

from C to (2L � ;) can be realized with an A-ordering.3

De�nition5. A selection function is a total function f : C ! (2L � f;g)
such that all literals in f(C) occur also in C for all C 2 C.

A selection function f is deterministic i� jf(C)j = 1 for all C 2 C.

Example 2. Consider a total L-ordering �L on ground literals. Then exactly

one literal in each ground clause is maximal. Thus �L de�nes a deterministic

selection function.

A total A-ordering on ground literals does not de�ne a deterministic selection

function in general as, for example, in L _L both literals are maximal.

We de�ne particular deterministic selection functions flast and f�rst which

select the exactly last, respectively, the �rst literal of a clause.

In tableaux with selection function the selected literals play the rôle of max-

imal literals in ordered tableaux. Accordingly, connections between clauses are

restricted to selected literals.

3 Consider the clauses C1 = L1 _ L2, C2 = L2 _ L1, and assume f(Ci) = fLig for

i = 1; 2. Any ordering �A such that f�A = f must be cyclic which contradicts

irre
exivity.



De�nition6. Given a selection function f , two ground clauses C and D have

a connection via f i� there are L 2 f(C), M 2 f(D) such that L is comple-

mentary to M . If, moreover, C;D 2 S then we say that C is a restart clause

of S (wrt f).

A clause C has a weak connection into a set of literals B via f i� some

L 2 f(C) is complementary to a literal of B.

In tableaux with selection function the only admissible extension steps are

with clauses that have a weak connection into the branch they extend or if

they are restart clauses wrt f (see De�nition 7). In the latter case C = D is

not excluded, however, such clauses are tautologies and, by regularity, are not

allowed to be considered for extension steps.

Note that the set of restart clauses can easily be computed in a pre-processing

step and thus causes no additional cost during proof search.

De�nition7. Given a selection function f and a set of ground clauses S, a

tableau with selection function f for S is a regular ground clause tableau

T such that

1. C = ClauseOf(n) has a weak connection via f into the branch ending in n

or

2. C is a restart clause of S wrt f .

Example 3. Reconsider the set M of Example 1. The selection function flast se-

lects the underlined literals and thus the ordered tableau displayed in Fig. 1 is

also a tableaux with selection function flast for M .

Because each restart clause can extend any tableau branch at any time (pro-

vided that it was not used before in this branch which would violate regularity),

one should be very careful in the choice of a selection function. To gain a max-

imum of search space restriction for a given set of clauses, one should choose a

selection function for which the number of restart clauses in S is minimal. This

prohibits extensive use of restarts and leads to stronger connected proofs.

By virtue of regularity of tableaux with selection function it is not possible

to build in�nite branches in an attempt to refute a �nite set S of ground clauses.

In our completeness proof this property ensures that a model of S can be con-

structed from an open �nite tableau branch which cannot be extended further.

As a consequence, ground tableaux with selection function are proof con
uent.

De�nition8. Let S be a set of ground clauses, f a selection function, and T a

tableau with selection function f for S. T is saturated i� there is no tableau

T
0 with selection function f for S such that T is a proper subtree of T0.

Theorem9. For any �nite unsatis�able set S of ground clauses and selection

function f there exists a closed tableau with selection function f for S.



Proof. Assume there were no closed tableaux with selection function f for S.

We construct a model of S.

Regularity does not permit to extend tableau branches with tautologies,

hence assume wlog that S does not contain any tautologies.

Let T be any saturated tableau with selection function f for S which is �nite

by regularity and �niteness of S. T is not closed, so it has a �nite open branch

B. The literals on B form a partial interpretation IB which satis�es at least the

clauses of S that were used to extend B.

Let S0 � S be the set of clauses not satis�ed by IB. The clauses in S
0 have

the following properties:

1. There are no clauses C;D 2 S0 such that C is connected to D via f . Other-

wise, C and D were restart clauses and thus were used to extend B, because

T is saturated. But then C and D are satis�ed by de�nition of IB.

2. There is no clause C 2 S0 such that C has a weak connection via f into B.

Otherwise, C was used to extend B and, as before, is satis�ed by de�nition

of IB.

By 1. J =
S
C2S0

f(C) is a well-de�ned partial interpretation which is triv-

ially also a model of S0.

By 2. IB [ J is a well-de�ned interpretation and thus a model of S, because

IB is a model of S�S0 and J is a model of S0. ut

This proof can be adapted to formulas in negation normal form (as done

for A-ordered tableaux in [8]) or even to arbitrary �rst order formulas, see [15]

for details. Likewise, the proof works as well for in�nite sets of ground clauses

provided that the clauses are selected in a fair manner for extension.

It is also easy to see that the proof goes through unaltered for a generalized

procedure in which before each restart or extension step the selection function

f can be changed arbitrarily.

In the case of A-orderings the proof can be made even shorter by making use

of a result by Bachmair & Ganzinger [1] that any set of clauses which is saturated

wrt ordered resolution and does not contain the empty clause is satis�able. If

this is assumed then the model building part in our proof can be omitted and

it simply remains to show that if B is a saturated ordered open tableau branch

for S, then B [ S is saturated wrt ordered resolution, an observation due to

Bachmair (personal communication).

We refrain from using the latter insight, because the results in [1] (i) are only

for the clausal case, whereas our approach can be generalized to non-normal-

form [15], and (ii) are only for the theory of equality, whereas we employ other

theories as well.

5 Lifting

As usual in semantic tableaux, there are (at least) two di�erent ways for lifting

ground tableaux with selection function to �rst order logic.



One can enforce a fair selection of all the ground instances Ŝ of a �rst order

clause set S to build a (possibly in�nite) ground tableau with selection function

for Ŝ which in turn gives a �rst-order tableau with selection function for S.

Completeness of this calculus follows directly from Herbrand's Theorem and

Theorem 9. This gives a calculus in the spirit of Smullyan [17].

For e�ciency reasons we favor the so-called free variable approach (cf., for

example, [7]): rather than guessing the \right" instantiation of a universally

quanti�ed formula, one uses free variables and uni�cation to search for a closing

substitution. For this purpose we generalize the notions of connection and of

selection function.

De�nition10. A clause C has a connection with a clause C
0 i� there exist

literals L 2 C, L0 2 C
0, such that L� = L0� with mgu �. L and L

0 are called

connection literals.

Given a selection function f , C and C
0 have a connection via f i� they

have a connection with literals L and L
0 and mgu � such that L� 2 f(C�) and

L
0
� 2 f(C0

�). If, moreover, C;C0 2 S we say that C is a restart clause in S

(with connection literal L and mgu �).

By Herbrand's Theorem we know that for any unsatis�able set S of �rst

order clauses there is a �nite unsatis�able set Ŝ of ground instances of S. For

Ŝ there is a closed ground tableau with selection function by Theorem 9. It is

straightforward to lift this tableau to a closed �rst order tableau provided that

the selection function used for the latter has the following property:

De�nition11. A selection function f is stable wrt substitutions i� L� 2
f(C�) implies L 2 f(C) for all substitutions � and clauses C.

Example 4. The functions flast and f�rst de�ned in Example 2 are stable wrt

substitutions.

Theorem12. For any unsatis�able set S of �rst order clauses and selection

function f which is stable wrt substitutions exists a closed tableau with selection

function f for S.

In general it is not possible to extend a deterministic selection function on

ground clauses to a deterministic selection function on �rst order clauses which

is stable wrt substitutions as the following simple example shows (one can ob-

tain, however, a slightly di�erent notion of selection function by using literal

occurrences in the de�nition of stability which admits deterministic extension):

Example 5. Consider any deterministic selection function f and the �rst order

clause C = p(x)_p(f(y)). For the substitution � = fx f(a); y  ag obviously

f(C�) = fp(x)�; p(f(y))�g = fp(f(a))g holds. Then every extension f̂ of f to

�rst order clauses must, by the substitutivity condition (Def. 11), select both

literals p(x) and p(f(y)). Therefore f̂ is not deterministic.



Table 1 shows a �rst order proof calculus based on De�nition 7. The addi-

tional set C is a constraint which guarantees that every ground instance of the

resulting tableau is also a ground tableau with selection function. More precisely,

C is a set of literal/clause pairs hL;Ci which record the so far selected literals

so one can check whether the substitution associated with a connection respects

the selection function. Accordingly, one de�nes hL;Ci� = hL�;C�i and C to be

satis�able i� L 2 f(C) for all hL;Ci 2 C. The idea of using constraints to ex-

press global restrictions on tableau search is due to [10], where constraints were

used to enforce regularity. To increase readability these regularity constraints

are omitted in Table 1.

T [ fBg jj C

(T [
S

L6=L0

L2C

fB [ fL�gg)� jj (C [ fhL0; Ci�g)�

where C has a weak connection via f

into B with connection literal L0 and
mgu �, C� is satis�able, and � is a

variable renaming of C.

T [ fBg jj C

(T[
S

L2C

fB [ fL�gg)� jj (C [ fhL0; Ci�g)�

where C is a restart clause in S with

connection literal L0 and mgu �, C�

is satis�able, and � is a variable re-
naming of C.

T [ fBg jj C

(T� fBg)� jj C�
if � is an mgu of fL; L0g � B and C� is satis�able.

Table 1. First order tableaux with selection function

Checking validity of a constraint C can be expensive. For example, the total

A-ordering based on the lexicographical path ordering (LPO) leads to a satis�-

ability test for C which is NP-complete [13].

A compromise is to simply omit the constraints and apply the selection func-

tion on uninstantiated clauses. The resulting calculus is still complete, but some-

what less restrictive. It corresponds to the rules in Table 1 if constraints and

the conditions imposed on them are removed. In other words, one constructs

a tableau in which each extension step at the time when it is performed is re-

stricted by a selection function f , but this is not necessarily the case for the �nal

closed tableau.

Such an intermediate calculus is possible, because in tableau calculi each

clause used for an extension step, by de�nition, is an input clause. Let us, there-

fore, call the resulting tableau calculi|in analogy to input resolution|tableaux

with input selection function.

It turns out that for tableaux with input selection function substitutive selec-

tion functions are not required: below we show completeness when the selection

function merely is stable wrt variable renaming:

De�nition13. A selection function f is stable wrt variable renaming i�

L 2 f(C) implies L� 2 f(C�) for all variable renamings � and clauses C.



Obviously, each selection function stable wrt substitutions is also a selection

function stable wrt variable renaming. Moreover, the inclusion is proper:

Example 6. Let f# be the function which selects the �rst literal (from the left)

among the literals containing a maximal number of (constant and function)

symbols.

It is easy to show that f# is stable wrt variable renaming. f# is not stable wrt

substitutions: let C = P (f(x)) _ Q(y), then f#(C) = P (f(x)), but f#(Cfy  
f(f(u))g) = Q(f(f(u))).

Obviously, one has much greater 
exibility in the choice of a suitable selection

function for a given problem in this larger class.

For the following completeness proof we have to modify some of our notions.

A ground clause is considered to be a sequence of disjunctive connected indexed

literals L : I, where the additional index I can be chosen from any set. It is

straightforward to adapt the de�nition of ground tableau with selection function

and the proof of Theorem 9 to indexed clauses.

Theorem14. Given an unsatis�able set S of �rst order clauses and a selection

function f which is stable wrt variable renaming. Then there exists a closed

tableau with input selection function f for S.

For the proof of this theorem we need the following technical lemma. Its easy

proof is based on the fact that for uni�able terms idempotent mgus always exist.

Lemma15. Given a tableau T and a ground substitution � for T such that T�

is closed. Let B be a branch of T closed by two complementary literals L� and

L
0
� and let � be the mgu of L;L0 2 B.

Then T�� = T�, and hence: T can be closed by applying the mgus of all

complementary literals in arbitrary order.

Proof of Theorem 14. By Herbrand's Theorem there exists a �nite unsatis�able

set bS of ground instances of S.

From S and bS we construct the set bS:S of indexed ground clauses as follows:

for each (L1_ � � �_Ln)� 2 bS with L1 _ � � �_Ln 2 S let L1�:L1�_ � � �_Ln�:Ln�

be in bS : S, where � is a renaming of the variables in L1 _ � � � _ Ln.
We extend f from S to bS:S by stipulating bL:L 2 bf ( bC:C) i� L 2 f(C).
bf is well-de�ned, because f is stable wrt variable renaming. bS:S is a set of

indexed ground clauses. From Theorem 9 we know that a closed tableau bT with

selection function bf for bS:S exists.

From bT we build a tableau T with selection function f for S:

1. Obtain T from bT by replacing each literal bL : L in bT by L.

2. If two complementary literals bL : L and bL0:L0 close a branch in bT with mgu

�, then apply � to T. Lemma 15 guarantees that the corresponding branch

in T� is closed, too.

The result is a closed tableau that can be constructed with the rules of Ta-

ble 1, neglecting constraints. Thus it is a tableau with input selection function f .

ut



6 Extensions and Related Calculi

6.1 Theory Connections

With theory reasoning we mean a general method to integrate theories such as

the equality theory (e�ciently) into deductive systems. Various sound and com-

plete methods have been developed for several calculi including resolution, the

connection method, and tableaux. All of the more e�cient methods for tableau-

like calculi share two main ideas: (i) an extension of the notion of connection

and connection uni�ers to theory connections and theory uni�ers and (ii) the

partition of the automated deduction system into a general purpose foreground

reasoner and a theory-speci�c background reasoner.

In the case of total theory reasoning the background reasoner calculates

theory uni�ers for a given input set of formulas given by the foreground reasoner,

whereas in partial theory reasoning the background reasoner in addition

derives new formulas, so-called residues, that have to be used by the foreground

reasoner. In our context we are only interested in total theory reasoning and we

give only a very brief overview of the necessary constituents of theory reasoning.

[4] is a detailed survey of theory reasoning in tableau calculi.

In general, every satis�able set of �rst order clauses de�nes a theory T . The
notions and semantics of an interpretation, the satis�ability of formulas, etc. are

restricted relative to a given theory.

De�nition16. A theory T is a satis�able set of �rst order clauses.

An interpretation I is a T -interpretation i� I satis�es T .
A formula � is T -satis�able i� � is satis�ed by a T -interpretation; � is

T -unsatis�able otherwise.

Example 7. The clause set O = f:x < x; :x < y _ :y < z _ x < zg de�nes the
theory of strict orderings.

For a given signature � the equality theory E� can be de�ned by the axioms

of re
exivity, symmetry, transitivity, and monotonicity for function and predicate

symbols of the equality predicate �. E� is �nite i� � is.

The notions of complementary literal and connection uni�er are relativized

to theories as well.

De�nition17. Let B be a set of literals. B is T -complementary i� the exis-

tential closure of the conjunction of the members of B is T -unsatis�able.
A substitution � is a T -uni�er for B i� B� is T -complementary. If, more-

over, B� is a minimal set of T -complementary literals, i.e. no proper subset of

it is T -complementary, then B is a T -connection and � is a T -connection
uni�er for B. As usual, a T -mgu is a most general T -uni�er.

The minimality condition for theory connections is due to [2], where a connec-

tion calculus with theories is presented for the �rst time. In [16] T -connections
are used without minimality condition and the rôle of T -connections is taken



by a so-called set of complete T -connections. The latter gives more 
exible con-

trol over the T -uni�ers that have to be calculated to obtain a complete calculus.

This can be of importance in theories where decidability is not guaranteed for T -
connections but for complete sets of T -connections. Our notion of T -connections
has the advantage that it leads straightforwardly to a theory version of tableaux

with selection function. It can be adapted easily to the terminology of [16].

Example 8. In the equality theory E the literal set B = fa�b; p(a); :p(b); p(x)g
is E-complementary, but it is no E-connection. The substitution � = fx ag is
an E-uni�er for B0 = fa � b; :p(b); p(x)g which is an E-connection.

If T = ;, then the standard notions of complementary literals, connection,

and connection uni�er are instances of the above de�nitions.

To build theories into tableaux with selection function we must modify our

de�nition of connection via a selection function:

De�nition18. A set S of instances of �rst order clauses has a T -connection
via f i� there is a T -connection B with uni�er � such that L 2 f(C) with C 2 S
for all L 2 B.

Depending on the given theory, more than two clauses may be involved in

a connection via f . Instead of de�ning T -restart clauses directly, we generalize
the notion of a connection into a tableau branch, i.e., into a set of literals.

De�nition19. Given a set of literals B, a selection function f , a theory T , and
a set S of �rst order clauses, then a clause C 2 S has a T -connection into

B i� there is a set S0 � fCjC is an instance of a clause in S or C 2 Bg with
C 2 S0 such that S0 has a T -connection via f .

f(C) is a connection literal of S0.

If S0 contains only clauses of S then every C 2 S0 is (an instance of) a restart
clause and if S0 \ B 6= ; then every C 2 (S0 � B) has a weak connection

into B.

Table 2 shows T -tableaux with selection function. The main di�erence to the

previous version is the uniformhandling of extension steps and, as a consequence,

there is no closure involved in any extension step. In theory reasoning it does

not make sense to separate out the case, where an immediate closure is possible,

because in general a tableau branch may have to be extended more than once

before any new open branch can be closed with a theory uni�er.

Theorem20. Given a theory T , a T -unsatis�able set S of �rst order clauses

and a selection function f which is stable wrt substitutions. Then there exists a

closed T -tableau with selection function f for S.

It is possible to modify the previous completeness proofs. Lifting to �rst order

logic is possible with the help of a theory version of Herbrand's Theorem [15, 16].



T [ fBg jj C

(T[
S

L2C

fB [ fL�gg)� jj (C [ fhL0; Ci�g)�

if C has a T -connection via f into
B with connection literal L0 and T -
mgu �, C� is satis�able, and � is a

variable renaming of C.

T [ fBg jj C

(T� fBg)� jj C�
if there is a T -connection B

0 � B with mgu � and C� is
satis�able.

Table 2. T -tableaux with selection function

The background reasoner is used for two tasks in this calculus: First, it is

used to calculate theory connections and, second, it is used to check for closure.

Both can be done by calculating theory uni�ers.

The calculation of theory uni�ers can be very expensive and even undecid-

able. Without any restriction one has to consider each set B with C 2 S for all

L 2 B. Therefore, a restriction on certain literals as, for example, in tableaux

with selection function, is extremely useful.

6.2 Restart Model Elimination

In [3] a modi�cation of Model Elimination [11] is introduced which bears some

similarities to tableaux with selection function. This calculus, called Restart

Model Elimination, also uses a selection function f to restrict connections to

those clauses which contain literals selected by f .

In contrast to tableaux with selection function, (i) only positive literals of a

clause are selected by f and are considered as connection literals and (ii) a clause

can extend a branch B only if it has a strong connection via f into B, i.e. if

it has a connection to the leaf -literal of B. Furthermore strong connections are

restricted to negative leaf literals.

Like in tableaux with selection function [8] imposing the strong connection

condition leads to an incomplete calculus. To avoid this negative clauses are

admitted for restarts.

The strong connection condition also implies that regularity in restart model

elimination has to be relaxed in order to obtain a complete calculus. A branch B

needs only be regular wrt all positive literals and within each block of B, where

a block is de�ned as a sequence of literals in B which lies totally between two

subsequent applications of the restart rule.

The completeness proof for restart model elimination is based on the literal-

excess method. Unfortunately, it gives no clue on how the calculus can be mod-

i�ed such that the selection function does yield negative literals as well.

7 Implementation and Application

T -Tableaux with (input) selection function were implemented in 3T
A
P [5], an

automated theorem prover for sorted multiple-valued full �rst order logic with



equality.

(Equality) theory reasoning is used to close a branch if the problem contains

equalities, but is not used to calculate theory connections. Instead, the test is

performed with a weaker condition (giving more candidates for theory connec-

tions than necessary) that can be computed in polynomial time [18]. This latter

method is, of course, restricted to selected literals.

Completely unrestricted extensions of tableau branches with restart clauses is

problematic, because such clauses might be totally independent from the branch

on which they are used. It turns out that a good heuristic for avoiding extensions

with potentially useless restart clauses is to prefer such restart clauses that have

a connection, not necessarily via the selection function, into the current branch.

3T
A
P uses a further technique due to [14] to avoid �

[ \ �

2

Fig. 2. Hierarchy of

predicate symbols

redundant extension steps in hindsight: if a subtableau

below a node n can be closed without using the lit-

eral of this node, then all open branches produced by

ClauseOf(Predecessor(n)) are pruned, i.e. closed imme-

diately.

We have found that tableaux with selection function

work quite well when the formulas of a problem to be

solved are in some sense hierarchical. Mathematical the-

ories, for example, are based on de�nitions which themselves are based on de�ni-

tions of more primitive notions. Most of these de�nitions introduce new predicate

or function symbols. Thus, these symbols form a hierarchy.

Let us consider a �rst order axiomatization of a fragment of set theory. Sym-

metrical di�erence � between two sets can be de�ned by the union [, intersection
\, and set di�erence �, all of which are based on the membership predicate 2.

Fig. 2 shows the hierarchy induced by these de�nitions. Formally, such a hi-

erarchy is an irre
exive, partial ordering <H on predicate, function and constant

symbols. In our example we have 2 <H [; \; � <H �.

De�nition21. Let < be any irre
exive, partial ordering on function and con-

stant symbols. Then for any terms s = f(s1; : : : ; sn), t = g(t1; : : : ; tm) we de�ne

s �L t to hold i� both of the following conditions hold:

1. f < g or f = g, n = m, and ti �L si for i = 1; : : : ; n;

2. the variables of s are a subset of the variables of t.

�L can be extended to an A-(L-)ordering in an obvious way provided that

< is an ordering on predicate symbols as well.

In the set theory example the ordering <H gives a good correspondence

between the literals ordered by �L and the hierarchy of set theory. �L often

prevents literals from unrelated hierarchies to be uni�able and, as a consequence,

a clause C has no �L-connection into a branch which only contains literals from

a hierarchy that is not reachable from a hierarchy of the maximal literals of C.

Note that even if the ordering does not perfectly re
ect the hierarchy within

a problem (or if there is no real hierarchy), completeness of the calculus still



guarantees a proof can be found, though proof search might not be in
uenced

as favorably.

Fig. 3 shows some results for
name ordering R CB 3T

AP [s] Otter[s]

set001 �L 30 11 1.18 0.06

none 10 4 0.12

set002 �L 546 206 27.82 2.32

none > 500

set003 �L 12 5 0.26 0.08

none 48 8 0.66

set004 �L 12 5 6.12 0.05

none 48 8 0.72

set005 any > 500 > 300

set006 �L 650 40 52.15 0.05

none > 500

set007 any > 500 > 300

set008 �L 1406 536 102.29 0.96
none > 500

set009 �L 22 10 0.27 0.47

none 22 10 0.17

Fig. 3. Results for TPTP-problem SET

a few problems from the TPTP

problem class SET [19]. The cal-

culus used are tableaux with in-

put selection function. None of

the problems is formulated with

equality.

As the time needed for refu-

tation is only a rough measure

of the complexity of a proof, we

give the number of rule applica-

tions (R)4 and of branches (CB)

in the closed tableau. Lines cor-

responding to the smallest proof

are darkly shaded. The �nal col-

umn shows the times Otter [12]

needs for a proof.5 Otter is usu-

ally faster, but the proofs it gen-

erates are typically longer, some-

times drastically. Also the basic speed of the experimental system 3T
A
P is slower

than that of Otter by a factor of several hundred.

8 Conclusion

We introduced tableaux with selection function which are a generalization of A-

ordered tableaux. In addition we showed that lifting is possible with respect to a

large class of selection functions which makes it easy to �nd a suitable selection

function for certain problems.

It turns out that theories can be build into tableaux with selection function

using the concepts of theory connection and theory reasoning.

Our �rst experiments with an implementation of this calculus show promising

results with problems that have a hierarchical structure.

In [15] tableaux with selection function are extended to the non-clausal case

and also an implementation with constraints is discussed.
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