Skip to main content

From action calculi to linear logic

  • Conference paper
  • First Online:
Computer Science Logic (CSL 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1414))

Included in the following conference series:

Abstract

Milner introduced action calculi as a framework for investigating models of interactive behaviour. We present a type-theoretic account of action calculi using the propositions-as-types paradigm; the type theory has a sound and complete interpretation in Power's categorical models. We go on to give a sound translation of our type theory in the (type theory of) intuitionistic linear logic, corresponding to the relation between Benton's models of linear logic and models of action calculi. The conservativity of the syntactic translation is proved by a model-embedding construction using the Yoneda lemma. Finally, we briefly discuss how these techniques can also be used to give conservative translations between various extensions of action calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abadi and L. Cardelli: A Theory of Objects. Monographs in Computer Science, Springer (1996)

    Google Scholar 

  2. M. Abadi and A. Gordon: A calculus for cryptgraphic protocols. In Proc. 4th ACM Conf. Computer and Communications Security, ACM Press (1997) 36–47

    Google Scholar 

  3. P. Aczel: Frege structures and the notions of proposition, truth and set. In The Kleene Symposium, North-Holland (1980) 31–59

    Google Scholar 

  4. J. Adámek and J. Rosický: Locally Presentable and Accessible Categories. London Mathematical Society Lecture Note Series 189, Cambridge University Press (1994)

    Google Scholar 

  5. A. Barber: Linear Type Theories, Semantics and Action calculi. PhD thesis ECS-LFCS-97-371, University of Edinburgh (1997)

    Google Scholar 

  6. A. Barber, P. Gardner, M. Hasegawa and G. Plotkin: Action calculi, the computational â‹‹-calculus and linear logic. Draft (1996)

    Google Scholar 

  7. A. Barber and G. Plotkin: Dual intuitionistic linear logic. Submitted (1998)

    Google Scholar 

  8. N. Benton: A mixed linear non-linear logic: proofs, terms and models. In Proc. Computer Science Logic (CSL'94), Springer Lecture Notes in Computer Science 933 (1995) 121–135

    Google Scholar 

  9. N. Benton, G. Bierman, V. de Paiva and J.M.E. Hyland: Linear lambdacalculus and categorical models revisited. In Proc. Computer Science Logic (CSL'92), Springer Lecture Notes in Computer Science 702 (1993) 61–84

    Google Scholar 

  10. L. Cardelli and A. Gordon: Mobile ambients. Draft (1997)

    Google Scholar 

  11. B.J. Day: On closed categories of functors. In Midwest Category Seminar Reports IV, Springer Lecture Notes in Mathematics 137 (1970) 1–38

    Google Scholar 

  12. B.J. Day: An embedding theorem for closed categories. In Category Seminar Sydney. Springer Lecture Notes in Mathematics 420 (1973) 55–64

    Google Scholar 

  13. P. Gardner: Closed action calculi. To appear in Theoretical Computer Science (1998)

    Google Scholar 

  14. P. Gardner and M. Hasegawa: Types and models for higher-order action calculi. In Proc. Theoretical Aspects of Computer Software (TACS'97), Springer Lecture Notes in Computer Science 1281 (1997) 583–603

    Google Scholar 

  15. J.-Y. Girard: On the unity of logic. Annals of Pure and Applied Logic 59 (1993) 201–217

    Article  Google Scholar 

  16. M. Hasegawa: Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda calculi. In Proc. Typed Lambda Calculi and Applications (TLCA'97), Springer Lecture Notes in Computer Science 1210 (1997) 196–213

    Google Scholar 

  17. M. Hasegawa: Models of Sharing Graphs (A Categorical Semantics of Let and Letrec). PhD thesis ECS-LFCS-97-360, University of Edinburgh (1997)

    Google Scholar 

  18. C. Hermida and A.J. Power: Fibrational control structures. In Proc. Concurrency Theory (CONCUR'95), Springer Lecture Notes in Computer Science 962 (1995) 117–129

    Google Scholar 

  19. G.B. Im and G.M. Kelly: A universal property of the convolution monoidal structure. Journal of Pure and Applied Algebra 43 (1986) 75–88

    Article  Google Scholar 

  20. A. Joyal, R. Street and D. Verity: Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119(3) (1996) 447–468

    Google Scholar 

  21. G.M. Kelly: Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note Series 64, Cambridge University Press (1982)

    Google Scholar 

  22. S. Mac Lane: Categories for the Working Mathematician. Springer Graduate Texts in Mathematics 5 (1971)

    Google Scholar 

  23. A. Mifsud: Control Structures. PhD thesis, University of Edinburgh (1996)

    Google Scholar 

  24. R. Milner: Higher-order action calculi. In Proc. Computer Science Logic (CSL'93), Springer Lecture Notes in Computer Science 832 (1994) 238–260

    Google Scholar 

  25. R. Milner: Action calculi V: reflexive molecular forms (with Appendix by O. Jensen). Unpublished manuscript (1994)

    Google Scholar 

  26. R. Milner: Calculi for interaction. Acta Informatica 33(8) (1996) 707–737

    Article  Google Scholar 

  27. R. Milner, J. Parrow and D. Walker: A calculus of mobile processes, part I + II. Information and Computation 100(1) (1992) 1–77

    Article  Google Scholar 

  28. E. Moggi: Computational lambda-calculus and monads. Technical report ECS-LFCS-88-66, University of Edinburgh (1988)

    Google Scholar 

  29. D. Pavlović: Categorical logic of names and abstraction in action calculi. Mathematical Structures in Computer Science 7(6) (1997) 619–637

    Article  Google Scholar 

  30. G. Plotkin: An illative theory of relations. In Situation Theory and Its Applications, Volume I, CSLI Lecture Notes Series, Centre for the Study of Language and Information (1990) 133–146

    Google Scholar 

  31. A.J. Power: Elementary control structures. In Proc. Concurrency Theory (CONCUR'96), Springer Lecture Notes in Computer Science 1119 (1996) 115–130

    Google Scholar 

  32. A.J. Power and E.P. Robinson: Premonoidal categories and notions of computation. Mathematical Structures in Computer Science 7(5) (1997) 453–468

    Article  Google Scholar 

  33. P. Sewell: Global/local subtyping for a distributed Л-calculus. Submitted (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mogens Nielsen Wolfgang Thomas

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barber, A., Gardner, P., Hasegawa, M., Plotkin, G. (1998). From action calculi to linear logic. In: Nielsen, M., Thomas, W. (eds) Computer Science Logic. CSL 1997. Lecture Notes in Computer Science, vol 1414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028008

Download citation

  • DOI: https://doi.org/10.1007/BFb0028008

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64570-2

  • Online ISBN: 978-3-540-69353-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics