
1

A Proof Theory
for

Constructive Default Logic1

Yao-Hua Tan

Erasmus University Rotterdam, Department of Computer Science,
P.O. box 1738, 3000 DR Rotterdam, The Netherlands, tan@cs.few.eur.nl

Free University Amsterdam, Department of Mathematics and Computer
Science, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands,

tan@cs.vu.nl

Abstract. We present what we call Constructive Default Logic (CDL) - a default logic in which the fixed-

point definition of extensions is replaced by a constructive definition which yield so-called constructive

extensions. Selection functions are used to represent explicitly the control of the reasoning process in this

default logic. It is well-known that Reiter's original default logic lacks, in general, a default proof theory. We

will show that CDL does have a default proof theory, and we will also show that this is related to the fact that

CDL has the existence property for constructive extensions and that it also has the semi-monotonicity

property. Furthermore, we will also show that, with respect to some counter-examples that were suggested by

Lukaszewicz, constructive extensions yield more intuitive conclusions than Reiter’s extensions. Hence,

constructive default logic does not only have heuristic advantages over Reiter’s default theory from a

computational point of view, but it is also more adequate with respect to knowledge representation.

1 This research was partly supported by the ESPRIT III BRA Project 6156 DRUMS 2.

2

1. Introduction

A variety of non-monotonic formalisms have been proposed to formalize defeasible reasoning.

For a comprehensive survey of non-monotonic reasoning the reader is referred to [Bes89] and

[Luk90]. It is well-known that defeasible reasoning is very complex from a computational

viewpoint. For example, Kautz and Selman showed in [KS91] that even simple default

theories in Reiter's default logic are very hard to compute.

One of the sources of the complexity problems in default logic is its non-constructive

character. In [Rei80] Reiter defines extensions in default logic by a fixed-point definition,

which is not constructive. This definition only allows one to check whether a set of sentences

is an extension, but it provides no information about how to generate an extension. So, the

actual reasoning process (and all the decisions how to solve conflicts!) that leads to an

extension is left implicit in Reiter's default logic. In recent years it was observed by several

researchers that the complexity problem of default logic can be heuristically improved by

making the default reasoning process more constructive (for an extensive discussion of this

point see e.g. [Moi92] and [FM92a,b]). We have developed a constructive version of Reiter's

default logic. Constructive Default Logic (CDL) is a default logic in which the fixed-point

definition of extensions is replaced by a constructive definition. From a computational point of

view constructive extensions have a heuristic advantage over Reiter extensions. A detailed

discussion about the heuristic advantages of constructive default logic in comparison to

Reiter's default logic can be found in [TT92].

Apart from being non-constructive it is also well-known that Reiter's original default logic

lacks a default proof theory for non-normal default rules, which was already observed by

Reiter himself to be a weakness of his logic. In this paper we will show that CDL does have a

default proof theory, and we will also show that this is intrinsically related to the fact that

default theories in CDL always have a constructive extension (the existence property), and that

CDL also has the semi-monotonicity property. Reiter's default logic lacks these two

properties. Furthermore, we will show that, with respect to some counter-examples that were

suggested by Lukaszewicz, constructive extensions yield more intuitive conclusions than

Reiter’s extensions. Hence, constructive default logic does not only have heuristic advantages

over Reiter’s default theory from a computational point of view, but it is also more adequate

with respect to knowledge representation.

2. Constructive Default Logic

Constructive default logic is default logic in which the normal fixed-point extensions of Reiter

are replaced by so-called constructive extensions. Research on constructive default logic was

reported earlier in [Tan91], [Tan92a], [Tan92b], [TT91a] and [TT92]. Constructive

3

extensions are parameterized by a selection function that is able to express the choice for the

extension to be generated. This selection function can be considered as a setting of a set of

control parameters that guides the reasoning. Thus we can parameterize the branching of the

defeasible reasoning process.

2.1 Extensions in Reiter's Default Logic

We give a brief summary of Reiter's default logic (see [Rei80], or [Bes89]). Default logic is a

classical logic extended with extra defeasible inference rules, the so-called default rules. We

write default rules as

(: ”1,…, ”n / •) ,

where , ”i and • are logical formulas. The formula is called the prerequisite, ”i the

justifications and • the conclusion of the default rule. The intuitive interpretation of such a

default rule is: if is believed, and all ”i are consistent with the set of beliefs, then one can

infer the conclusion •. A default rule is called normal if its justification is identical to its

conclusion, i.e. if it is of the form (: ” / ”). A default rule is called semi-normal if it is of

the form (: ” • / •). A default theory ∆ = < W , D > consists of a set of logical

formulas W and a set of default rules D. The deductive closure of the union of W and a set of

conclusions of a default theory is called an extension E. In what follows Th(S) denotes the

deductive closure in a logic L of a set S of L-formulas, i.e. Th(S) = {˘ | S ƒ ˘}. To

distinguish Reiter's extensions from our constructive extensions, we will call the first R-

extensions.

Definition 2.1
A set of sentences E is an R-extension of the default theory ∆ = < W, D >, if E =

i=0
 Ei,

where each layer Ei is defined as follows:

for i = 0,

E0 = W,

and for i ≥ 0,

Ei+1 = Th(Ei) fi { • | (: ”1,…, ”n / •) £ D, £ Ei, and ”1,…, ”n E}.

Note that this definition is a fixed-point definition, which in principle is not constructive. In

the definition of the layer Ei+1 it is required that the formulas ”1,…, ”n are not

contained in E. Hence, the definition of each layer Ei+1 depends on the final outcome E. A

simple example illustrates this definition. Suppose ∆ = < W, D > with W = {b} and D =

(b : p / f). This default rule says that if something is a bird, and it is not known to be a

4

penguin, then one can assume it can fly. One can easily verify that the R-extension of ∆ is E =

Th({b, f}), hence the conclusion that it can fly, i.e. the formula f, is contained in E. However,

if we have the information in W that the object is a penguin, i.e. W' = {b, p}, then the default

theory ∆' = < W ', D > has the R-extension E' = Th({b, p}), which does not contain the

formula f. This implies that in default logic conclusions are not preserved under information

growth.

2.2 Selection Functions

A selection function, which will be denoted by §, selects a subset of default conclusions from

the set of all default conclusions that can be derived at a certain layer. Indices i from an index

set I are added to indicate that the selection is made at the i-th reasoning step. The general

definition of a selection function is as follows.

Definition 2.2.1

Let L be a logic and let U be a set of well-formed formulas of L. Let P(U) denote the set of all

subsets V “ U, and let I be an index set. The function § : I x P (U) P(U) is called a

selection function if for every subset V of U and every index i ; §(i,V) “ V.

Definition 2.2.2

Let D be a set of defaults. The set of consequences of D, denoted as Cons(D) is defined by

Cons(D) = {• | (: ”1,…, ”n / •) £ D}. Suppose ∆ = < W, D > is a default theory and

§ : I x P (U) P(U) is a selection function. We call § a selection function related to ∆ if U =

Cons(D). The set of selection functions related to ∆ is denoted by Sel(∆).

In this paper the index set I will always be the set of natural numbers, with the usual ordering.

The condition in Definition 2.2.1 says that § should not select a formula that is not contained

in V. Instead of §(i,V) we will also write simply §i(V). We will say that a selection function is

an identity selection function if for all V “ Cons(D) and for all i holds §i(V) = V. And we will

say that a selection is an empty selection function if for all V “ Cons(D) and for all i holds

§i(V) = ˚.

2.3 Constructive Extensions

First we define the notion of a §-constructive extension. This is a constructive extension of

which the construction is controlled by a selection function §.

5

Definition 2.3.1

Let ∆ = < W, D > be a default theory and § be a selection function related to ∆. A set of

sentences C§ is called the §-constructive extension of the default theory ∆, if C§ =
i=0

 C§ i ,

where

for i = 0,

C§0 = W,

for i ≥ 0,

C§i+1 = Th(C§ i) fi §i+1(Cons(D§ i+1)),

where

D§i+1 = {(: ”1,…, ”n / •) £ D | £ C§i, and ”1,…, ”n Th(C§i)}.

We will call default logic based on §-constructive extensions Constructive Default Logic

(CDL). In the sequel we will refer to Reiter’s default logic with R-extensions as DL. If it is

clear from the context, we will usually omit the § prefix, and simply call it constructive

extension. For a given default theory ∆ = < W , D > there is a collection of such §-

constructive extensions, parameterized by selection functions § £ Sel(∆).

Definition 2.3.2

Let ∆ = < W, D > be a default theory and suppose § is a selection function related to ∆. A

default rule (: ”1,…, ”n / •) £ D is called applicable at stage i if (: ”1,…, ”n / •) £

D§i. We say that a default (: ”1,…, ”n / •) £ D is used in principle by § at stage i if it is

applicable and • £ §i(Cons(D§i)). In this case we also say that the formula • is selected by §

at stage i.

The next example shows that the choice of a selection function is very important.

Example 2.3.3

Let ∆ = < W, D > be a default theory with

W = ˚ and D = {(: p / p) , (: p / p)}

Consider the identity selection function §, i.e. for all i and V “ Cons(D) we have §i(V) = V,

then § generates the constructive extension C§ = Th({p, p}), which is inconsistent. This is

due to the fact that both defaults in D can be applied and are selected by § at stage C§1 in the

construction of C§, i.e. §1(Cons(D§1)) = {p, p}.

From this example follows immediately the following observation.

6

Observation 2.3.4

A constructive extension C§ of a default theory ∆ = < W, D > can be inconsistent, although

W is consistent.

This observation clearly distinguishes CDL from DL, because Reiter proved that every R-

extension of a default theory ∆ = < W, D > is inconsistent if and only if W is inconsistent.

Proposition 2.3.5 (see Corollary 2.2 in [Rei80])

Let E be an R-extension of the default theory ∆ = < W, D >, then E is inconsistent if and

only if W is inconsistent.

From Example 2.3.3 also follows immediately that DL and CDL are not equivalent for normal

defaults.

Observation 2.3.6

If ∆ = < W, D > is a default theory of which D consists only of normal default rules, then it

is generally not the case that for every constructive extension C§ of ∆ there is an R-extension E

of ∆ such that E = C§.

This distinguishes CDL from every alternative default logic proposed in the literature, because

all the alternative default logics I know of are equivalent to DL with respect to normal default

rules (for an extensive survey of alternative default logics see [FM92a,b]).

At first sight the type of inconsistency in Example 2.3.1 might look like something that has to

be prevented at all costs. However, in recent years more and more researchers have become

aware that inconsistencies are simply a fact of life, and that we must be able to represent them

in our knowledge representation formalisms. For example Gabbay and Hunter argued

extensively for the importance of maintaining inconsistencies in common sense reasoning

[GH91,92]. Actually there are already different logical formalisms that allow inconsistencies.

For example Belnap's 4-valued logic [Bel77] and da Costa’s paraconsistent logic [dC74]. In

[Tan92b] I discuss the Bi-Modular System (BMS), a meta-level architecture for non-

monotonic reasoning, that is based on a 4-valued logic similar to Belnap’s. Since BMS

corresponds to CDL in a well-defined way, this 4-valued logic can also be used for CDL. The

basic idea is that the deductive closure operator (Th) in Definition 2.3.1 is replaced by a

deductive closure operator under Belnap’s logic. This topic of representing inconsistencies

will be further investigated in another paper. Here we take a more conservative viewpoint, and

discuss how we can impose constraints on the selection functions in order to prevent

inconsistencies between default conclusions.

7

Definition 2.3.7 (Local Consistency Constraint)

Let ∆ = < W, D > be a default theory, and let § be a selection function related to ∆. We say

that § satisfies the Local Consistency constraint, or short LC-constraint, if for all i and every

V “ Cons(D) we have that §i(V) is consistent.

This solves the inconsistency in Example 2.3.3, because the identity selection function §

selects §1(D§0) = {p, p}, hence it does not satisfy the LC-constraint. Inconsistencies

between default conclusions can also occur between default conclusions that are selected at

different stages in the construction of a constructive extension. Hence, in addition to the local

consistency constraint we also need a global consistency constraint.

Definition 2.3.8 (Global Consistency Constraint)

Let ∆ = < W, D > be a default theory, and let § be a selection function related to ∆. We say

that § satisfies the Global Consistency constraint, or short GC-constraint, if for every

V “ Cons(D) we have that
i=0

 §i(V) is consistent.

In addition to inconsistent default conclusions there is another phenomenon, which we call

non-groundedness, which is typical for constructive extensions. Consider the following

example.

Example 2.3.9 (Non-Groundedness example)

Let ∆ = < W, D > be a default theory with

W = { q p } and D = { (: p / q) }

Consider the identity selection function §, i.e. for all i and V “ Cons(D) we have §i(V) = V,

then § generates the constructive extension C§ = Th({q, p}). This is counterintuitive,

because the justification p of the default rule (: p / q) is violated by the conclusion of the

implication q p.

What happens in this example is that the default rule defeats its own justification indirectly.

First the default can be applied at a certain stage, but at a later stage the conclusion of this

default leads to a violation of the justification of this default rule. Also this problem can be

solved by imposing a constraint, the so-called non-self-defeating constraint, on selection

functions.

Definition 2.3.10

A default (: ”1,…, ”n / •) £ D that in principle is used at stage i by a selection function §

is called defeated by §, if there is some j ≥ i such that ”k £ Th(C§j) for some k with

1 ≤ k ≤ n. We call § self-defeating if there is some stage i and some formula • that is

selected by § at i such that all defaults (: ”1,…, ”n / •) £ D§i with consequence • are

8

defeated by §. If § is not self-defeating, then we say that § is non-self-defeating (NSD), or

that it satisfies the NSD-constraint, or simply that it is NSD.

From this definition it is clear that empty selection functions satisf

trivially.

OOOObbbbsssseeeerrrrvvvvaaaattttiiiioooonnnn 2222....3333....11111111

Every empty selection function satisfies the NSD-constraint.

It turns out that the NSD-constraint is a very strong constraint. In parti

the NSD-constraint subsumes the consistency constraints, where subsumption

defined as follows.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 2222....3333....11112222 ((((SSSSuuuubbbbssssuuuummmmppppttttiiiioooonnnn bbbbeeeettttwwwweeeeeeeennnn ccccoooonnnnssssttttrrrraaaaiiiinnnnttttssss))))))))

Let A and B be two costraints on selection functions. We say that A subsumes B, written

A B, if we have for every selection function § that

If § satisfies the A-constraint, then § satisfies the B-constraint.

Note that the subsumption relation is reflexive and transitive. The GC-constraint subsumes the

LC-constraint, and the NSD-constraint subsumes the GC-constraint. Hence, we have the

following subsumption relation between the NSD-, GC- and LC-constraints.

NSD GC LC

We only prove that the NSD-constraint subsumes the GC-constraint. The oth

relation GC LC is obvious. Moreover, NSD LC follows immediately by the transitivity

of the subsumption relation.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....3333....11113333 ((((NNNNSSSSDDDD----ccccoooonnnnssssttttrrrraaaaiiiinnnntttt ssssuuuubbbbssssuuuummmmeeeessss GGGGCCCC----ccccoooonnnnssssttttrrrraaaaiiiinnnntttt))))

For every selection function § holds;

If § satisfies the NSD-constraint, then § satisfies the GC-constraint.

PPPPrrrrooooooooffff....

Suppose § is a selection function related to ∆ = < W, D > that does not satisfy the GC-

constraint, then there is a stage i in the construction of the construcive extension C§ of ∆ such

that
i

j=0
 §j(Cons(D§ j)) is inconsistent. Due to this inconsistency we know that Th(C§ i)

contains every formula, and so does C§ i+1. Hence, it is obvious that for every formula • that

9

is selected by § at stage i holds that all defaults (: ”1,…, ”n / •) £ D§i+1 are defeated by

§. This implies that § is self-defeating. fl

We also have the following result about the NSD-constraint.

Proposition 2.3.14

Let C§ be a constructive extension of the default theory ∆ = < W, D > with § satisfying the

NSD-constraint, then C§ is inconsistent if and only if W is inconsistent.

Proof. Straightforward.

It can happen that in the construction of stage j it turns out that some default conclusions that

were derivable at an earlier stage i < j are no longer derivable at j. In other words, it is not

guaranteed that if i < j, then §i(Cons(D§ i)) “ §j(Cons(D§ j)). For example, in Example 2.3.9

one can easily verify that the default conclusion q is derivable at stage 1, i.e. q £

§1(Cons(D§1)) and hence q £ C§ 1, but not anymore at stage 2, i.e. q §2(Cons(D§ 2)). Note

that although q is not derivable as default conclusion at stage 2 this formula is still contained in

C§2, because q £ C§ 1 and C§1 “ C§ 2. Hence, we have the following observation.

Observation 2.3.15

If C§ is a constructive extension for the default theory ∆ = < W, D >, then it can happen that

for certain i and j with i < j, holds §i(Cons(D§ i)) §j(Cons(D§ j)).

Notice that this non-monotonic increase can be caused either by the constructive character of

C§ or the selection function §. In Example 2.3.9 this lack of monotonic increase in the

derivable default conclusions happens while the selection function is an identity function.

Hence, in this case this effect is not caused by the selection function, but purely by the

constructive character of the extension. But this non-monotonic increase can also be caused

purely by the selection function: e.g. if §j makes an empty selection, whereas §i(Cons(D§i)) is

non-empty.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....3333....11116666

If C§ is a constructive extension for the default theory ∆ = < W, D >, then for each stage

i ≥ 1 holds

C§i “ Th(W fi
i

j=0
 §j(Cons(D§j))),

where D§i = {(: ”1,…, ”n / •) £ D | £ C§i-1, and ”1,…, ”n Th(C§i-1)}.

10

Proof.

The proof is by induction on the stage i in the construction of the constructive extension C§ for

∆ = < W , D >.

i = 1: Suppose ˘ £ C§1. Then ˘ £ Th(C§0) or ˘ £ §1(Cons(D§1)).

If ˘ £ Th(C§0), then ˘ £ Th(W), and hence ˘ £ Th(W fi
1

j=0
 §j(Cons(D§j))).

If ˘ £ §1(Cons(D§1)), then ˘ £ Th(W fi
1

j=0
 §j(Cons(D§j))), because

§1(Cons(D§1)) “
1

j=0
 §j(Cons(D§j)).

i = m : Suppose ˘ £ C§m, then ˘ £ Th(C§m-1) or ˘ £ §m(Cons(D§m)).

If ˘ £ Th(C§m-1), then C§m-1 ƒ ˘. Hence, with the induction hypothesis it also follows that W

fi
m-1

j=0
 §j(Cons(D§j)) ƒ ˘. Since

m-1

j=0
 §j(Cons(D§ j)) “

m

j=0
 §j(Cons(D§ j)) it also follows that W

fi
m

j=0
 §j(Cons(D§j)) ƒ ˘. Hence, it follows that ˘ £ Th(W fi

m

j=0
 §j(Cons(D§j))).

If ˘ £ §m(Cons(D§m)), then ˘ £ Th(W fi
m

j=0
 §j(Cons(D§j))), because

§m(Cons(D§m)) “
m

j=0
 §j(Cons(D§j)). fl

The converse inclusion of this proposition, i.e. Th(W fi
i

j=0
 §j(Cons(D§ j))) “ C§i, does not

hold. This can be argued as follows. Suppose ˘ £ Th(W fi §i(Cons(D§i)), then W fi

§i(Cons(D§i)) ƒ ˘. Since, W “ Th(C§i-1) we also have Th(C§ i-1) fi §i(Cons(D§ i)) ƒ ˘.

However, this does not yet imply that ˘ £ Th(C§i-1) fi §i(Cons(D§ i)).

Proposition 2.3.17

If C§ is a constructive extension for the default theory ∆ = < W, D > , then

C§ = Th(W fi
i=0

 §i(Cons(D§i))),

where D§i = {(: ”1,…, ”n / •) £ D | £ C§i-1, and ”1,…, ”n Th(C§i-1)}.

Proof.

“ : Follows immediately from Proposition 2.3.16, and the fact that C§ 0 = W.

 : Suppose ˘ £ Th(W fi
i=0

 §i(Cons(D§ i))). Then there is a k such that ˘ £ Th(W fi
k

i=0
 §i(Cons(D§ i))). If we can prove that W fi

k

i=0
 §i(Cons(D§ i)) “ C§ k, then ˘ £ Th(C§k),

and hence ˘ £ C§. So, we only have to prove that

11

W fi
k

i=0
 §i(Cons(D§i)) “ C§ k (= Th(C§k-1) fi §k(Cons(D§ k))}.

If · £ W, then · £ Th(C§k-1), since W “ Th(C§ k-1), and therefore · £ C§k.

If · £
k

i=0
 §i(Cons(D§ i)), then there is a j with 0 ≤ j ≤ k such that · £ §j(Cons(D§j)). This

implies that · £ C§j, and hence also that · £ C§k. fl

Satisfying the NSD-constraint is a necessary but not sufficient condition for a selection

function to determine an R-extension. It is easy to give examples of selection functions that are

NSD, but still do not define an R-extension, simple because they are not exhaustive. For

instance some applicable defaults may be not selected at any stage. The notion of

exhaustiveness is related to the concept of closure under a set of defaults.

Definition 2.3.18

Let D be a set of defaults and S be a set of sentences. We call S closed under D if, for every

default (: ”1,…, ”n / •) £ D with £ S and ”1,…, ”n S, • £ S. Let ∆ = < W,

D > be a default theory and suppose § is a selection function related to ∆. We call §

exhaustive for D if C§ is closed under D.

In [TT92] we proved the following theorem which says that constructive extensions which are

generated by selection functions that are non-self-defeating and exhaustive are equivalent to

Reiter's R-extensions. In other words, the set of all Reiter-extensions of a default theory ∆ is

equivalent to the set of all those constructive extensions C§ of ∆ that are generated by non-self-

defeating and exhaustive selection functions that are related to ∆.

Theorem 2.3.19

Let ∆ = < W, D > be a default theory.

{E | E is an R-extension of ∆}

=

{C§ | C§ is a §-constructive extension of ∆ with § NSD and exhaustive}

This theorem shows that Reiter's default logic is a special case of constructive default logic.

An interesting class of selection functions is the class of selection fun

defeating but not exhaustive. These non-exhaustive §-constructive extensions are

respects more intuitive than R-extensions. Lukaszewicz observed in [Luk84, 88] that R-

extensions sometimes yield counter-intuitive results. This can be illustrated with the following

example.

12

Example 2.3.20

Let ∆ be the default theory with

W = ˚ and D = {(: p / q), (: q / s)}.

The support for the conclusion q is as weak as the support for the conclusion s. In the first

case the formula p should not be contained in the extension, and in the second case the

formula q. Since W is empty, one intuitively expects that ∆ has two extensions; one that

contains q, and another one that contains s (or one extension that contains both conclusions).

However, ∆ has only one R-extension, namely E = Th({q}), which lacks s. The application

of the first default (: p / q) blocks the application of the second default (: q / s),

because the justification of the second default is violated by the conclusion of the first one.

With §-constructive extensions these counter-intuitive results can be avoided. Consider two

selection functions § and §', of which the first one never selects the formula q, whereas the

second is the identity function that selects everything i.e. §'(V) = V for all V. It is clear that C§

= Th({s}), because the application of (: q / s) is no longer blocked by (: p / q),

because the conclusion q is not selected by §. In addition there is also a §-constructive

extension of ∆, C§ ' = E = Th({q}), which contains the conclusion q. In this respect §-

constructive extensions are clearly more intuitive than R-extensions.

In the next sections we will see that the solution of Example 2.3.20 is directly related to the

so-called semi-monotonicity property of constructive default logic. A property that Reiter's

default logic lacks. Semi-monotonicity is an important property, because it was shown by

Guerreiro, Cassanova and Hemerly in [GCH90] that if a default logic is not semi-

monotonous, then it can never have a proof theory. Reiter observed already in [Rei80] that his

default logic does not have, in general, a proof theory, which he considered a serious

drawback of his logic.

Constructive extensions have a computational advantage over R-extensions. Selection

functions can be used as heuristics to generate extensions more adequately. A more detailed

discussion about the computational advantages of constructive default logic in comparison to

Reiter's default logic can be found in [TT92]. Of course not all computational problems of

default logic that were pointed out so ingeniously by Kautz and Selman in [KS91] are solved

by this constructive perspective on R-extensions. In particular the NSD and exhaustive

selection functions of §-constructive extensions that generate R-extensions in Theorem 2.3.19

might be very hard to specify. This specification problem is related to the fact that many of

these selection functions, that generate R-extensions, may contain a hidden belief revision

component. The NSD-constraint seems to presuppose a kind of look-ahead oracle. A default

rule ∂, which is applicable at stage i, can only be selected at i, if its justifications will not be

13

violated at any later stage j > i. Hence, to determine the selection §i at stage i, a look-ahead

oracle has to give the information whether justifications will be violated at a later stage j.

However, this problem of the look-ahead oracle could perhaps be avoided by postponing the

checking. Instead of checking whether the justifications of a selected default conclusion will

not be violated at a later stage, we simply select those applicable defaults we want, and check

at each later stage j whether the then applicable defaults do not have a conclusion that might

lead to the violation of an earlier selected default. Hence, this only includes a look-back check

on information already known! It is still an open question whether this look-back check works

for every NSD selection function. This topic will be further investigated in subsequent

research. However, even if no perfect control knowledge can be found, heuristic knowledge

may be available that restricts the search and the amount of backtracking needed.

3. Properties of §§§§ -Constructive Extensions

In this section we will show that constructive default has two important properties that Reiter's

default logic lacks. The first property is that every default theory has a constructive extension,

and the second property is semi-monotonicity. Both properties are necessary for a proof

theory for default logic.

It is well-known that some default theories do not have an R-extension in Reiter's default

logic. Consider the following example.

Example 3.1

Let ∆ be the default theory with A a consistent set of sentences

W = A and D = {(: p / p)}.

This default theory has no R-extension E.

This lack of extensions (sometimes!) is always considered to be a serious flaw of Reiter's

default logic. The problem in Example 3.1 is not so much that the default (: p / p) has no

R-extension, since this default rule refutes itself. Rather the problem is that the consistent set

A has no R-extension at all. Roughly speaking, extensions in default logic can be considered

as the conclusion sets of a default theory ∆. Hence, if ∆ has no R-extension, then even the

consistent set A has no conclusions in Reiter's default logic. Clearly, this is undesirable. One

expects the consistent set A to have at least one extension that contains the deductive closure of

A, and nothing more. The underlying problem here is that this self-refuting default rule should

be ignored in the generation of the extension. Selection functions are a very natural way to

obtain this effect. In the general case we can prove that every default theory has at least one §-

constructive extension.

14

Proposition 3.2 (Existence of C§§§§)

Every default theory ∆ has a §-constructive extension C§.

Proof.

One can easily check that for every default theory ∆ = < W, D > the empty selection function

§ related to ∆ generates the set C§ = Th(W) which is a constructive extension for ∆. fl

Since it was already observed that empty selection functions always satisfy the NSD-

constraint, it follows immediately from this proof that the existence of constructive extensions

is preserved under the NSD-constraint.

Corollary 3.3

Every default theory ∆ has a §-constructive extension C§ of which the selection function

satisfies the NSD-constraint.

Another property which is relevant for default logics is semi-monotonicity. Roughly speaking,

semi-monotonicity means that no conclusions are lost when new default rules are introduced.

Definition 3.4 (Semi-Monotonicity)

Let ∆ = < W, D > and ∆' = < W, D ' > be two default theories such that D ' “ D. For any

extension E' for ∆' there is an extension E for ∆ such that E' “ E.

Reiter's default logic is not semi-monotonous. Consider the following example.

Example 3.5

Let ∆ and ∆' be two default theories such that

∆ : W = ˚ and D = {(: p / q), (: q / s)}

∆' : W = ˚ and D ' = {(: q / s)}

Both default theories have exactly one R-extension. Let E be the R-extension of ∆, and E' the

R-extension of ∆'. Now it is obvious that the formula s is contained in E, but not in E'.

Hence, we have D' “ D and E' E, which implies that Reiter's default logic is not semi-

monotonous.

Due to the selection functions we can show that constructive default logic is semi-

monotonous.

15

Proposition 3.6 (Semi-monotonicity of CDL)

Let ∆ = < W, D > and ∆' = < W, D ' > be two default theories such that D ' “ D. For any

constructive extension C§ ' for ∆' there is a selection function § related to ∆ such that C§ is a

constructive extension for ∆ such that C§ ' “ C§ .

Proof

Let C§' be a constructive extension for ∆' generated by the selection function §'. The idea of

the proof is to define a selection function § related to ∆ that makes exactly the same selections

as §', i.e. § ignores the conclusions of the extra defaults in D - D'. Let D§ i be the set of

defaults that are applicable at stage i in the construction of C§, i.e.

D§i = {(: ”1,…, ”n / •) £ D | £ C§i-1, and ”1,…, ”n Th(C§i-1)}.

Now we define § as follows. For all V “ Cons(D), and for all i;

§i(Cons(D§i)) = §'i(Cons(D§ 'i)), and §i(V) = ˚ if V ≠ Cons(D§ i).

Since § ' is a function, it is obvious that § is also a function. Moreover, it also follows

immediately from this definition that we have for all i

C§i = C§ ' i (*)

Hence, we have C§ 'i “ C§ i for all i. If we can prove that § is a selection function related to ∆,

then it follows immediately from the definition of § that C§ is a constructive extension of ∆.

Since §' is a selection function we know that for all i holds §'i(Cons(D§ 'i)) “ Cons(D§ ' i).

So, if we can prove that for all i holds Cons(D§ 'i) “ Cons(D§ i), then § is a selection function.

Suppose there is a stage i such that Cons(D§ 'i) Cons(D§ i), then there is a default

(: ”1,…, ”n / •) £ D' with £ C§'i-1, and ”1,…, ”n Th(C§'i-1), and (: ”1,…,

”n / •) D. Since D' “ D, it follows that C§i-1 ≠ C§ 'i-1, but this contradicts (*). Hence, for

all i holds Cons(D§ 'i) “ Cons(D§ i). fl

4. A Proof Theory for Constructive Default Logic

Let Pre(D) denote the set of prerequisites of the default rules in D, and Jus(D) the set of

justifications of default rules in D. A proof theory for default logic is defined as follows. We

use the definition of Guerreiro, Cassanova and Hemerly from [GCH90], which is a

generalization for arbitrary defaults of Reiter's definition of a default proof for normal default

as given in [Rei80].

16

Definition 4.1

Let ∆ = < W, D > be a default theory and ˘ a sentence. A finite sequence < D0,…, Dk > of

finite subsets of D is a default proof of ˘ from ∆ iff:

1. W fi Cons(Dk) ƒ ˘,

2. For 1 ≤ i ≤ k, W fi Cons(Di-1) ƒ Pre(Di),

3. D0 = ˚,

4. If W is consistent, then for each ” £
k

i=0
 Jus(Di) holds

W fi
k

i=0
 Cons(Di) fi {”} is consistent.

The consistency requirement in condition (4) is needed for the following reason. If W is

inconsistent, then any finite sequence < D0,…, Dk > of finite subsets of D should be a proof

of any sentence ˘ from ∆. This property is important in proving that default proof theory is

complete.

First we give the definition for soundness and completeness of a default proof theory in the

general case, as they are given in [GCH90]. In these definitions E refers to the notion of

extension as it is defined in the particular default logic. For example, E refers to R-extensions

in Reiter’s default logic, and to constructive extensions in constructive default logic.

Definition 4.2 (Soundness of default proof theory)

If < D0,…, Dk > is a default proof of ˘ from ∆, then there is an extension E of ∆ such that ˘

£ E.

Definition 4.3 (Completeness of default proof theory)

If there is an extension E of ∆ such that ˘ £ E, then there is a < D0,…, Dk > which is a

default proof of ˘ from ∆.

Reiter observed already in [Rei80] that his default logic only has a sound and complete default

proof theory for the normal defaults, but not for non-normal ones. It can easily be illustrated

why Reiter’s default logic is not sound with respect to the default proof theory as defined in

Definition 4.1. Consider again the default theory ∆ = < A, {(: p / p)} of Example 3.1

that has no R-extension. Let ˘ be a formula that follows classically from A, i.e. A ƒ ˘. Now it

is obvious that the sequence < D0 > with D0 = ˚ is a default proof of ˘ from ∆. However,

since ∆ does not have an R-extension there is certainly not an R-extension E of ∆ that contains

the formula ˘. Another reason that makes the proof theory unsound with respect to Reiter’s

default logic is related to the lack of semi-monotonicity. Consider the two default theories ∆ =

< ˚ , {(: p / q), (: q / s)} > and ∆' = < ˚ , {(: q / s)} > from Example 3.5.

Now one can easily check that the sequence < D 0, D 1 > with D 0 = ˚ and D 1 =

17

{(: q / s)} is a default proof of the formula s from ∆ as well as ∆'. However, we argued

that ∆ has only one R-extension that does not contain the formula s.

Gueirrero, Cassanova and Hemerly showed in [GCH90] that the two properties existence and

semi-monotonicity of extensions are necessary conditions for a default proof theory which is

sound and complete with respect to a particular default logic. In other words, they showed

that if a particular default logic does not have the existence of extensions property or the semi-

monotonicity property, then it is impossible to define a default proof theory that is sound and

complete with respect to this default logic (see Theorem 13 in [GCH90]).

Since we showed in the previous section that constructive default logic has the existence

property as well as the semi-monotonicity property, it satisfies the necessary conditions for a

sound and complete proof theory. However, necessary conditions are not yet sufficient

conditions. We still have to prove positively that constructive default logic has a default proof

theory. This is done in the proofs of the following theorems.

Theorem 4.4 (Soundness of default proof theory w.r.t. CDL)

If there is a default proof of ˘ from ∆ = < W, D >, then there is a constructive extension C§

of ∆ such that ˘ £ C§.

Proof.

Suppose ˘ has a default proof from ∆ = < W , D >. Then there is a finite sequence

< B0,…, Bk > of finite subsets Bi of D such that it is a default proof of ˘ from ∆. We use

this sequence to generate a constructive extension C§ of ∆ that contains the formula ˘ in the

following way.

Let D§i be again the set of defaults that are derivable at stage i in the construction of C§ , i.e.

for i > 1 we define

D§i = {(: ”1,…, ”n / •) £ D | £ C§i-1, and ”1,…, ”n Th(C§i-1)}.

Now define the selection function § that is used to generate C§ as follows;

§2n(Cons(D§2n)) = Cons(Bn), for 0 ≤ n ≤ k,

§2n+1(Cons(D§2n+1)) = ˚, for 0 ≤ n ≤ k,

§n(Cons(D§2n+1)) = ˚, for n > 2k,

and for any V and any i such that V ≠ Cons(D§ i), we have §i(V) = ˚.

18

If we can prove that § is a selection function, then it follows immediately from the definition

of § that C§ is a constructive extension for ∆ such that ˘ £ C§. So, what remains to be proven

is that this § is a selection function.

Due to the definition given above it is trivially true that § is a function. To prove that § also

satisfies the requirement of a selection function we have to prove that for all stages i in the

construction of C§ holds §i(Cons(D§i)) “ Cons(D§ i). Note that this trivially holds for every

stage i with an empty selection; i.e. for i = 2n+1 with 1 ≤ n ≤ k, and for i > 2k. Hence, we

only have to prove

Cons(Bi) “ Cons(D§ 2i), for 0 ≤ i ≤ k.

Note that by definition B0 = ˚. Suppose • £ Cons(Bi) with 1 ≤ i ≤ k, then there is a default ∂
= (: ”1,…, ”n / •) £ Bi, and therefore we also have

(: ”1,…, ”n / •) £ D. (1)

Since, < B0,…, Bk > is a default proof it follows that for any i with 1 ≤ i ≤ k holds W fi

Cons(Bi-1) ƒ Pre(Bi), and consequently it follows in particular that W fi Cons(Bi-1) ƒ .

Hence, by definition of § it also follows that W fi §2(i-1)(Cons(D§ 2(i-1))) ƒ , and thus we

have £ Th(C§2(i-1)), and hence it follows that

 £ C§2i-1 (2)

Let SD§ i denote the set of applicable default rules from D§ i of which the conclusions are

selected by §i, i.e.

SD§i = {(: ”1,…, ”n / •) £ D§i | • £ §i(Cons(D§i))}.

By definition of default proof it follows that each ” £
k

i=0
 Jus(Bi) is consistent with W fi

k

i=0
 Cons(Bi). Hence, this implies that

each ” £
2k

i=0
 Jus(SD§ i) is consistent with W fi

2k

i=0
 Cons(SD§ i). (3)

Since we know from Proposition 2.3.17 that C§ = Th(W fi
i=0

 §i(Cons(D§ i)), we also know

that C§ = Th(W fi
2k

i=0
 §i(Cons(D§ i)), because after stage 2k no new default conclusions are

selected by §. Since
2k

i=0
 §i(Cons(D§ i)) =

2k

i=0
 Cons(SD§ i), it follows from (3) that for all

justifications ”1,…,”n from the default rule ∂ we have ”1,…, ”n C§, and hence also

19

 ”1,…, ”n Th(C§2i-1). (4)

From (1), (2) and (4) it follows that ∂ £ D§ 2i, and therefore its conclusion • is contained in

Cons(D§2i). Consequently, § is a selection function. fl

We can even prove a stronger type of soundness, namely that if there is a default proof of ˘

from ∆ = < W, D >, then there is a constructive extension C§ of ∆ with a selection function

§ that is NSD such that ˘ £ C§. This type of soundness is called NSD-soundness.

Theorem 4.5 (NSD-soundness of default proof theory w.r.t. CDL)

If there is a default proof of ˘ from ∆ = < W, D >, then there is a constructive extension C§

of ∆ with a selection function § that is NSD such that ˘ £ C§.

Proof.

Suppose ˘ has a default proof from ∆ = < W , D >, then there is a finite sequence

< B0,…, Bk > of finite subsets of D such that it is a default proof of ˘ from ∆. We use this

sequence to generate a constructive extension C§ of ∆ that contains the formula ˘ by defining

the selection function § exactly as in the proof of Theorem 4.4. We prove that § is NSD by

contraposition.

Suppose that § is not NSD, i.e. § is self-defeating. Hence, there is a stage i and a formula •

that is selected by § at stage i such that for every applicable default rule (: ”1,…,”n / •) £

D§i with conclusion • there is some later stage j > i such that ”m £ Th(C§j) with

1 ≤ m ≤ n. This implies that ”m £ C§, hence by Proposition 2.3.17 it also follows that

 ”m £ Th(W fi
i=0

 §i(Cons(D§i))). Since every selection of § after stage 2k is by definition

empty, it follows that

Th(W fi
i=0

 §i(Cons(D§ i))) = Th(W fi
2k

i=0
 §i(Cons(D§ i))),

and hence ”m £ Th(W fi
2k

i=0
 §i(Cons(D§ i))). Since,

2k

i=0
 §i(Cons(D§i)) =

k

i=0
 Cons(Bi) ,

it follows that W fi
k

i=0
 Cons(Bi) fi {”m} is inconsistent, which contradicts the assumption

that the sequence < B0,…, Bk > satisfies condition (4) of the definition of a default proof. fl

We can only prove completeness with respect to a subclass of constructive extensions; namely

the extensions that are NSD. This restriction is needed for the following reason. Consider

again Example 2.3.9. In this example there was a default theory ∆ with W = {q p} and

D = {(: p / q)}. This ∆ has a constructive extension C§ = Th({q , p}) of which the

20

selection function § is not NSD. One can easily verify that the only way to derive the formula

q with a default proof from ∆ is with a sequence < B0,…, Bk > such that (: p / q) £ Bk.

However, with respect to this sequence we have that W fi
k

i=0
 Cons (Bi) fi {p} is

inconsistent, hence it violates condition (4) of the definition of a default proof, and therefore

this sequence is not a default proof. This argument can be generalized to a proof for the

following theorem.

Theorem 4.6

If C§ is a constructive extension for a default theory ∆ = < W, D > with a selection function

§ that is not NSD, then C§ contains at least one formula ˘ for which there exists no default

proof from ∆.

Proof. Straightforward.

Theorem 4.7 (NSD-completeness of default proof theory w.r.t. CDL)

Let C§ be a constructive extension of a default theory ∆ = < W, D > where D is a finite set

of defaults. If a formula ˘ is contained in C§ and the selection function § is NSD, then there is

a default proof of ˘ from ∆.

Proof.

Let the formula ˘ be contained in a constructive extension C§ of a default theory ∆ =

< W, D > with a selection function § that is NSD. Let D§ i be the set of defaults that are

derivable at stage i in the construction of C§, i.e. for i > 0 we define again

D§i = {(: ”1,…, ”n / •) £ D | £ C§i-1, and ”1,…, ”n Th(C§i-1)}.

And let SD§i again denote the set of applicable default from D§i of which the conclusions are

selected by §i, i.e.

SD§i = {(: ”1,…, ”n / •) £ D§i | • £ §i(Cons(D§i))}.

Let C§k be the first stage in C§ that contains ˘. If k = 0, then ˘ £ C§0 = W, and one can easily

verify that the sequence < B0 > with B0 = ˚ is a default proof of ˘ from ∆. If k > 0, then

define each set Bi in the finite sequence < B0,…, Bk > as follows

B0 = ˚ and Bi =
i

j=0
 SD§ j , for 1 ≤ i ≤ k.

It is obvious that < B0,…, Bk > is a finite sequence of finite subsets, because the set of

defaults D is finite. We have to prove that this sequence is a default proof. We check the four

conditions of Definition 4.1.

21

(1) First we have to prove that W fi Cons(Bk) ƒ ˘. Since we have ˘ £ C§ k with k ≥ 1 it

follows by Proposition 2.3.16 that ˘ £ Th(W fi
k

j=0
 §j(Cons(D§j))). Since

k

j=0
 §j(Cons(D§j)) =

k

j=0
 Cons(SD§ j) = Cons(

k

j=0
 SD§ j) = Cons(Bk),

it follows that ˘ £ Th(W fi Cons(Bk)), and hence W fi Cons(Bk) ƒ ˘.

(2) Next we have to prove that for each i with 1 ≤ i ≤ k holds

W fi Cons(Bi-1) ƒ Pre(Bi).

Let £ Pre(Bi), then there is a default (: ”1,…, ”n / •) £ Bi. Since, Bi =
i

j=0
 SD§ j we

also know that there is an m with 0 ≤ m ≤ i such that (: ”1,…, ”n / •) £ SD§m, and

hence £ C§m-1.

Consequently, by Proposition 2.3.16 it follows that £ Th(W fi
m-1

j=0
 §j(Cons(D§j))). Since

m ≤ i, it follows that £ Th(W fi
i-1

j=0
 §j(Cons(D§ j))). Since,

i-1

j=0
 §j(Cons(D§j)) =

i-1

j=0
 Cons(SD§ j) = Cons(

i-1

j=0
 SD§ j) = Cons(Bi-1),

it also follows that £ Th(W fi Cons(Bi-1)), and hence W fi Cons(Bi-1) ƒ .

(3) B0 = ˚ follows by definition.

(4) Finally, we have to show that if W is consistent, then for each ” £
k

i=0
 Jus(Bi) holds that

W fi
k

i=0
 Cons(Bi) fi {”} is consistent. Assume W is consistent, and that for a certain ”' £

k

i=0
 Jus(Bi) the set of sentences W fi

k

i=0
 Cons(Bi) fi {”'} is inconsistent. Note that

k

i=0
 Bi =

Bk, hence it follows that

k

i=0
 Jus(Bi) = Jus(

k

i=0
 Bi) = Jus(Bk).

Let SD§ j be the first stage in Bk in which a default is applicable with the justification ”' of

which the conclusion is selected by §j. Since this default is applicable in SD§ j, it follows that

 ”' Th(C§ j-1). But this implies that ”' must have been derived at a later stage C§m with

j ≤ m ≤ k, which contradicts the assumption that the selection function § is NSD. fl

22

5. Conclusions

Reiter's original default logic lacks a default proof theory for non-normal default rules, which

was already observed by Reiter himself to be a weakness of his logic. In this paper we have

shown that constructive default logic does have a default proof theory. We have also shown

that this is intrinsically related to the fact that default theories in CDL always have a

constructive extension (the existence property), and that CDL also has the semi-monotonicity

property. Furthermore, we have shown that, with respect to some counter-examples that were

suggested by Lukaszewicz, constructive extensions yield more intuitive conclusions than

Reiter’s extensions. Hence, constructive default logic does not only have heuristic advantages

over default theory from a computational point of view, but it is also more adequate with

respect to knowledge representation.

Acknowledgements
I wish to thank Witold Lukaszewicz for his careful proofreading and many helpful

suggestions, and Joeri Engelfriet for his remarks.

References

[Bes89] P. Besnard, An Introduction to Default Logic, Springer Verlag, 1989.

[Bel77] N. D. Belnap, A useful four-valued logic, in: J.M. Dunn and G. Epstein (eds.),

Modern Uses of Multiple-Valued Logic, Reidel, Dordrecht, 1977, pp. 5-37.

[Bla86] S. Blamey, Partial Logic, in: D. Gabbay and F. Guenthner (eds.), Handbook of

Philosophical Logic, Vol.III, Reidel, 1986, pp. 1-70.

[Bre89] G. Brewka, Preferred subtheories: An extended logical framework for default

reasoning, Proc. of the IJCAI ‘89, Detroit, 1989, pp. 1043-1048.

[Bre91] G. Brewka, Cumulative Default Logic: in defense of nonmonotonic inference rules,

Artificial Intelligence 50, 1991, pp. 183-205.

[dC74] N. da Costa, On the theory of inconsistent formal systems, Notre Dame Journal of

Formal Logic XV, 1974, pp.497-510.

[GH91] D. Gabbay and T. Hunter, Making inconsistency respectable, Part I, in: Ph. Jorrand

and J. Keleman (eds.), Fundamentals of Artificial Intelligence Research, Lecture Notes in

Artificial Intelligence, Vol. 535, Springer Verlag, 1992.

23

[GH92] D. Gabbay and T. Hunter, Making inconsistency respectable, Part II, Technical

report, Dept. of Computing, Imperial college, London, 1992.

[Eth88] D. W. Etherington, Reasoning with Incomplete Information, Pitman, London, 1988.

[FM92a] C. Froidevaux and J. Mengin, A framework for comparing default logics, In: D.

Pearce and G. Wagner (eds.), Proc. of JELIA 92, Vol. 633, Lecture Notes in Artificial

Intelligence, Springer Verlag, 1992, pp. 154-173.

[FM92b] C. Froidevaux and J. Mengin, An Operational Approach to Default Logics, Tech.

Report, Laboratoire de Recherche et Informatique, Université Paris Sud, 1992.

[GCH90] R.A. Gueirrero, M.A. Cassanova and A.S. Hemerly, Contributions to a proof

theory for generic defaults, Proc. ECAI 90, 1990.

[JB91] U. Junker and G. Brewka, Handling partially ordered defaults in TMS, in: R. Kruse

and P. Siegel (eds.), Symbolic and Quantitative Approaches to Uncertainty, Lecture Notes in

Computer Science 548, Springer Verlag, 1991, pp. 211-218.

[Jun92] U. Junker, Controlling the selection and retraction of assumptions, Proc. of the

ECAI'92 Workshop on Theoretical Foundations of Knowledge Representation, Vienna,

1992.

[KS91] H. Kautz and B. Selman, Hard problems for simple default theories, Artifical

Intelligence 49, 1991, pp.243-279.

[Luk84] W. Lukaszewicz, Considerations on default logic, Proc. AAAI Workshop on Non-

Monotonic Reasoning, New Paltz, 1984, pp.165-193.

[Luk88] W. Lukaszewicz, Considerations on default logic - An alternative approach,

Computational Intelligence, 4:1-16, 1988.

[Luk90] W. Lukaszewicz, Non-monotonic Reasoning, Series in Artificial Intelligence, Ellis

Horwood, 1990.

[Moi92] Y. Moinard, Unifying various approaches to default logic, Proc. of the IPMU '92,

Mallorca,1992.

[Pea92] D. Pearce, Default logic based on constructive logic, In: B. Neumann (ed.), Proc. of

the European Conference on Artificial Intelligence, ECAI '92, John Wiley and Sons, 1992.

24

[Rei80] R. Reiter, A logic for default reasoning, Artificial Intelligence 13, pp. 81-132.

[Tan91] Y.H. Tan, Relating bi-modular systems to default logic and autoepistemic logic,

Proc. Int. Workshop on Non-monotonic Reasoning and Partial semantics, 1991, Free

University Amsterdam.

[Tan92a] Y.H. Tan, Non-monotonic Reasoning: Logical Architecture and Philosophical

Applications, Ph.D. Thesis, Free University Amsterdam, Department of Mathematics and

Computer Science, 1992.

[Tan92b] Y.H. Tan, BMS - A meta-level approach to non-monotonic reasoning, in: W. Van

der Hoek, J.-J. Ch. Meyer, Y.H. Tan and C. Witteveen (eds.), Non-Monotonic Reasoning

and Partial Semantics, Series in Artificial Intelligence, Ellis Horwood Publishers, 1992.

[Tan92c] Y.H. Tan, Representing a meta-level architecture for non-monotonic reasoning in

(extended) partial logic, Proc. of the Workshop Partial Semantics and Non-Monotonic

Reasoning, University of Linkoping, May 25-29, 1992.

[Tan93] Y.H. Tan, Merging object-level and meta-level logics using two types of negations,

Tech. Report, Erasmus University Rotterdam, 1993.

[TT90] Y.H. Tan and J. Treur, Partial logic and non-monotonic reasoning, Proc. ECAI-90

Workshop on Partial Deduction, Partial Evaluation and Intelligent Reasoning, Stockholm,

1990.

[TT91a] Y.H. Tan and J. Treur, A bi-modular approach to non-monotonic reasoning, in: F.

De Glas and D. Gabbay (eds.), Proc. World Congress on Fundamentals of Artificial

Intelligence, WOCFAI-91, Paris, 1991, pp. 461-476. (An modified version will appear in a

special volume of Studia Logica.)

[TT92] Y.H. Tan and J. Treur, Constructive default logic and the control of defeasible

reasoning, In: B. Neumann (ed.), Proc. of the European Conference on Artificial Intelligence,

ECAI '92, John Wiley and Sons, 1992, pp. 299-303. (Extended version: Report IR-280,

Department of Mathematics and Computer Science, Vrije Universiteit Amsterdam, 1991, 52

pp.)

