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A b s t r a c t .  There are three reasons for illumination to vary within a 
scene. First, a light source may be visible from some surfaces but not 
from others. Second, because of linear perspective, the shape and size of 
a finite source may be different when viewed from different points in a 
scene. Third, the brightness of a source may be non-uniform. These vari- 
ations are captured by a new computational model of spatially varying 
illumination. Two types of source are described: a distant hemispheric 
source such as the sky in which light converges onto a scene, and a prox- 
imal source such as a lamp in which fight diverges into a scene. Either 
type of source may have a non-uniform brightness function. We show 
how to render surfaces using this model, and how to compute shape 
from shading under it. 

1 Introduction 

There are three reasons why i l luminat ion  ma y  v a r y  within a scene. The  first 
is tha t  the source m a y  be visible f rom some surfaces but  not  f rom others. The 
second is that ,  because of  linear perspective, the shape and size of  the source 
m a y  be different when viewed from different points  in the scene. The  third is 
tha t  the brightness of  the source m a y  be non-uniform. 

In order to draw inferences about  a scene f rom such i l luminat ion variations, 
we develop a model  of  how light flows th rough  a scene. This model  is com- 
puta t iona l  in tha t  it specifies da ta  s tructures for representing general types of  
i l luminat ion variation,  as well as a lgori thms for manipu la t ing  these da ta  struc- 
tures. Specifically, we model  two general i l luminat ion scenarios: an ou tdoor  scene 
i l luminated by the sky, and a scene i l luminated by a proximal  diverging source 
such as a lamp or window. The  model  generalizes our earlier papers [1, 2] in 
which we assumed tha t  the light source was a uniformly bright sky. 

2 Visibility Fields 

We begin with an example tha t  illustrates the fundamenta l  issues. Consider an 
empty  room with dark colored walls (allowing us to ignore surface interreflec- 
tions). The room is i l luminated by light f rom the sky which passes th rough  a 
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window. Observe that  the fundamental cause of the illumination variation is that 
the set of directions in which the light source is visible varies across free space. 
This geometric variation is explicitly shown in Figure 1. Each disc in this figure 
represents the set of light rays passing through a point in free space within the 
room. The white sectors of each disc represent the rays which come directly from 
the window (and hence from the source), and the grey sectors represent the rays 
which come directly from the walls. 

Fig. 1. An empty room illuminated by the light passing through a window. 

This partition of the rays is the key tool for modelling illumination variation 
within a scene, and is formally defined as follows [1]. The VISIBILITY FIELD at 
a point x in free space is a set of unit length vectors, Y(x), ihat  represent the 
directions in which the light source is visible from x. Observe that, as one moves 
away from the window in a particular direction, the solid angle of rays in which 
the window is visible decreases. 

3 B r i g h t n e s s  o f  a L i g h t  R a y  

Visibility and aperture are geometric properties of free space. As such, they 
cannot account for photometric properties of light, in particular, that  not all 
light rays carry the same energy density. For example, on a sunny day, certain 
of the light rays which pass through a window come from the sun, while others 
come from the blue sky. 

Energy density of light is specified in terms of the brightness of a light ray, 
which is defined as follows [3, 5]. Consider viewing a scene through a narrow 
straight tube. Suppose that  the near end of the tube is positioned at a point x, 
and that  the tube is pointing in direction L. Let the light energy passing through 
the tube be d2E. Let the solid angle subtended by the far end of the tube (when 
viewed from x) be d~2. Let the cross sectional area of the tube be da. Then, the 
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BRIGHTNESS OF A LIGHT RAY passing through x from direction L is 

d2 E 
B ( x , L )  _= dad(2  " 

Brightness has units lumens per square metre per steradian. The key property 
of the brightness is that,  in the absence of scattering (eg. by fog), brightness is 
constant along a ray [3]. Considering each ray as a single geometric object, we 
may thus assign to this object a single brightness value. 

For a light ray that  originates from a reflecting surface rather than from a 
source, brightness may be associated with a surface point x and with the direc- 
tion L. This brightness value is referred to as the LUMINANCE of x in direction 
L. In the case of a Lambertian surface, luminance is independent of direction, 
and may be modelled as 

Bout(x) = p- / B(x,  L) N ( x ) .  L d(2.  
~r Jv(x) 

(1) 

This model is accurate provided that the albedo is low, that  is, provided that  
surface interreflections may be ignored. 

4 C o n v e r g i n g  a n d  D i v e r g i n g  S o u r c e s  

Two extreme scenarios are of special interest. The first is a light source that is 
much larger than a scene, so that rays from the source converge to the scene. The 
canonical example is the sky. The second is a light source that  is much smaller 
than a scene so that  rays from the source diverge to the scene. The canonical 
example is a lamp or candle. 

The brightness of rays coming from a converging or a diverging source depend 
only on direction. This is obvious for a converging source, since the brightness 
of the sky does not vary as one moves within a scene: The case of the diverging 
source is less obvious, but may be understood in terms of an example of a room 
illuminated by sky light that  passes through a clean window. Light rays that 
converge on the window diverge into the room, so that  the rays entering the 
room inherit the brightness of rays from the sky, which depend on direction 
only. 

Let B~rc(L) denote the brightness function of a converging or diverging 
source, and write (1) as 

Bo ,(x) = s f B,r (L) N(x).LdO. (2) 
Jw(x) 

It is important  to note that  in classical photometry, a diverging source is 
usually approximated as a point[5] whose illumination is specified by luminous 
intensity which has units lumens per steradian. This definition, however, does not 
allow certain causes of illumination variation to be distinguished. For example, a 
source may have non-spherical shape or it may have non-uniform brightness, or 
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both. Moreover, luminous intensity does not account for the penumbra (smooth 
cast shadow boundaries) produced by the finite size of the source. The advan- 
tage of the above model (2) is that it explicitly models the actual causes of 
illumination variation in a scene. 

5 D i s c r e t i z a t i o n  o f  M o d e l  

In order to perform computations, the variables of our models must be dis- 
cretized. Space may be represented by an N x N x N cubic lattice. A node 
in this lattice is x = (x, y, z). Assume that a surface seen in an image may be 
represented by a continuous depth map 5(x, y) defined on a unit square. Given 
such a surface, a set of free space nodes F is the set of nodes lying above the 
surface. 

Light travels from one free space node to another. Light is restricted to travel 
in a small number of directions, which are defined by an M x M cube, where 
M << N. Each node on the surface of this cube defines a direction, namely, the 
direction of a light ray passing through that  node and through the center of the 
cube. In particular, we restrict our discussion to sources that are on the same 
side of the plane z = 0 as the viewer, so that the directions of light rays coming 
from the source may be represented by a hemicube [4], denoted 7/*. 

A brightness function, B*,.c(L ) , is defined on ~* .  Because the directions 
7/* define a non-uniform spacing of the unit sphere, to discretize the integral it 
is necessary to weight each of directions by a solid angle AL that  depends on 
L 6 7-/*. Finally, for each node x, let the discrete set of directions in which the 
light source is visible from x be denoted •* (x), so that  ]2" (x) C_ ~/* Then, for 
either a converging or diverging source, we have the following model of surface 
luminance, 

Bout(x) = p ~ B*~c(L ) N ( x ) .  L zflL. (3) 
7r 

Lev" (x) 

In the next section, we present computationM algorithms which are based on 
this model. 

6 F o r w a r d  a n d  I n v e r s e  A l g o r i t h m  

We present a generalization of the forward and inverse algorithms introduced 
in [1], where a uniform converging source was assumed. We now consider both 
converging and diverging sources, each having arbitrary brightness functions. 

Light rays enter a scene through the boundary of free space .T. For a given 
scene, the set of rays coming from a source may be specified by the values of 
the visibility field on the boundary of free space. Both the forward and inverse 
algorithms depend on the computation of the visibility field over free space, iT. 
This computation is performed by propagating the visibility field away from the 
boundary of :T. The computation is by induction. The boundary condition on 
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the visibility field is given for depth n = 0. Then, assuming the visibility field 
has been computed up to depth n, it is computed at depth n + 1. 

FORWARD ALGORITHM: Given z(x,  y) , compute B*ut(X , y). 

n : = 0 ;  
r epea t  

for  all (x, y), 
x := (x ,y ,n) ;  
if  n <_ z(x,  y) 

t hen  for all L E 7-/* 
if  L E 1 ; * ( x + L )  a n d x + L E  
then  L E 1;* (x) 
else L ~ ]2' (x); 

if  n = z(x,  y), t hen  compute B*~,t(x , y) using Eq. (3); 
n : = n + l ;  

unt i l  for all (x, y), z(x,  y) < n . 

The inverse problem is more challenging. As in [1, 2], we ignore the shading 
effects of the surface normal. This is done by replacing the factor N(x) .  L by its 
average value, 0.5, on the unit hemisphere 7/(x), yielding the model 

Bo~t(x) = P E B*~r A L .  (4) 
2~r 

Lev.(x) 

The present model is more general since it allows for directional variation in the 
brightness of the source. 

INVERSE ALGORITHM: Given an image I (x ,  y), compute z(x,  y) . 

for all (x, y), z(x,  y) := 0 ; 
n : = O ;  
r epea t  

for all (x, y) E P*, 
x := (x ,y ,n ) ;  
if  z * ( x , y ) = n  

for all L E 7t* 
if  L E Y * ( x + L )  a n d x + L E 9  c* 
t hen  L E 12" (x) 
else L • ]?*(x); 

Compute B*~t(x ) using Eq. (4); 
if  IBo*~t(x) - I ( x , y ) ]  > c t h e n  

n : = n + l ;  
unt i l  for all (x, y), z(x,  y) < n .  

z (x , y )  := n + l ;  
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7 Resul ts  

A slanting plane is rendered using a diverging spherical source. Three bright- 
ness functions are used: isotropic (left), weakly directed (middle), and strongly 
directed (right). As the brightness becomes more directed along the optical axis, 
the maximum of the image intensity shifts toward the center of the image. 

A depth map is computed from each of the three images. The corners of the 
example on the right illustrate an important ambiguity in the inverse algorithm. 
Since a spotlight gives off a cone of light, the colums of free space at the image 
corners are darkest at shallow points (above the source cone), brighter as the 
depth increases, and darker again as the distance from the source increases. The 
algorithm cannot distinguish the two causes of darkness. 

Fig. 2. The diverging source is a sphere centered at the viewer. 
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