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A b s t r a c t .  In this paper, area preserving geometric multi-scale repre- 
sentations of planar curves are described. This allows geometric smooth- 
~n9 without shrinkage at the same time preserving all the scale-space 
properties. The representations are obtained deforming the curve via in- 
variant geometric heat flows while simultaneously magnifying the plane 
by a homethety which keeps the enclosed area constant. The flows are 
geometrically intrinsic to the curve, and exactly satisfy all the basic re- 
quirements of scale-space representations. In the case of the Euclidean 
heat flow for example, it is completely local as well. The same approach 
is used to define length preserving geometric flows. The geometric scale- 
spaces are implemented using an efficient numerical algorithm. 

1 I n t r o d u c t i o n  

Multi-scale representations and smoothing of signals have been studied now for 
several years since the basic work of Witkin [30] (see for example [5, 14, 15, 17, 
21, 31]). In this work we deal with multi-scale representations of closed planar 
curves, tha t  is, the boundaries of bounded planar shapes. We show how to derive 
a smoothing operation which is geometric, sometimes local, and which satisfies 
all the s tandard properties of scale-spaces without shrinkage. 

An impor tant  example of a (linear) scale-space is the one obtained filtering 
the initial curve C0 with the Gaussian kernel g(.,cr), where ~, the Gaussian- 
variance, controls the scale [5, 8, 14, 31]. It has a number of interesting properties, 
one of them being that  the family of curves g(a)  obtained from it, is the solution 
of the heat equation (with Co as initial condition). From the Gaussian example 
we see that  the scale-space can be obtained as the solution of a partial differential 
equation called an evolution equation. This idea was developed in a number of 
different papers [1, 2, 13, 21, 23, 25]. We describe below a number of scale- 
spaces for planar curves which are obtained as solutions of nonlinear evolution 
equations. 
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The Gaussian kernel also has several undesirable properties, principally when 
applied to planar curves. One of these is that the filter is not intrinsic to the curve. 
This can be remedied by replacing the linear heat equation by geometric heat 
flows, invariant to a given transformation group [10, 11, 24, 25, 27]. Geometric 
heat flows are presented in forthcoming sections. 

Another problem with the Gaussian kernel is that  the smoothed curve shrinks 
when cr increases. Several approaches, discussed in Section 2.1, have been pro- 
posed in order to partially solve this problem for Gaussian-type kernels (or linear 
filters). These approaches violate basic scale-space properties. In this paper, we 
show that  this problem can be completely solved using a variation of the geomet- 
ric heat flow methodology, which keeps the area enclosed by the curve constant. 
The flows which we obtain, precisely satisfy all the basic scale-space require- 
ments. In the Euclidean case for example, the flow is local as well. The same 
approach can be used for deriving length preserving heat flows. In this case, the 
similarity flow exhibits locality. In short, we can get geometric smoothing without 
shrinkage. 

2 C u r v e  E v o l u t i o n :  T h e  E u c l i d e a n  G e o m e t r i c  H e a t  F l o w  

We consider now planar curves deforming in time, where "time" represents 
"scale." Let C(p, t) : S 1 x [0, ~-) --~ 11. 2 denote a family of closed embedded curves, 
where t parametrizes the family, and p the curves (C(p, t) = [z(p, t), y(p, t)]T). 
We assume throughout this paper that  all of our mappings are periodic and 
sufficiently smooth. We should add that  these results may be generalized to 
non-smooth curves based on the theory of viscosity solutions or the results in 
[3, 4]. 

For the case of the classical heat equation, the curves deform via 

at -- ap~ [ ypp 

C(p, O) = Co(p). 
(1) 

As pointed out in the Introduction, C(p, ~) = [z(p, t), y(p, t)] T, satisfying (1), can 
be obtained from the convolution of z(p~ 0), y(p, 0) with the Gaussian 9(p, Q. 

In order to separate the geometric concept of a planar curve from its formal 
algebraic description, it is useful to refer to the planar curve described by r t) 
as the image (trace) of C(p, t), denoted by Img[C(p, t)] [25]. Therefore, if the curve 
C(p, t) is parametrized by a new parameter w such that w = w(p, t), o~ > O, we 

obtain Img[C(p, t)] = Img[C(w, Q]. 
We see that  different parametrizations of the curve, will give different re- 

sults in (1), i.e, different Gaussian multi-scale representations. This is an unde- 
sirable property, since parametrizations are in general arbitrary, and may not 
be connected with the geometry of the curve. We can attempt to solve this 
problem choosing a parametrization which is intrinsic to the curve, i.e., that 
can be computed when only Img[C] is given. A natural parametrization is the 
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Euclidean arc-length v, which means that  the curve is traveled with constant 
velocity, H C~ I]~_ 1. The initial curve C0(p) can be re-parametrized as C0(v), and 
the Gaussian filter ~(v, ~), or the corresponding heat flow, is applied using this 
parameter. The problem is that  the arc-length is a time-dependent parametriza- 
tion, i.e., v(p) depends on time. Also, with this kind of re-parametrization, some 
of the basic properties of scale-spaces are violated. For example, the order be- 
tween curves is not preserved. Also, the semi-group property, which is one of the 
most important requirements of a scale-space, can be violated with this kind of 
re-parametrization. The theory described below solves these problems. 

Assume now that  the family C(p, ~) evolves (changes) according to the fol- 
lowing general flow: 

OC 
O-~ = # ~ '  (2) 

where .M" is the inward Euclidean unit normal and/~ the normal curve velocity 
component. I ff i  is a geometric function of the curve, then the "geometric" curve 
Img[.] is only affected by this normal component [7]. The tangential component 
affects only the parametrization. Therefore, (2) is the most general geometric 
flOW. 

The evolution (2) was studied by different researchers for different functions 
ft. A key evolution equation is the one obtained for t3 = ~, where ~; is the 
Euclidean curvature [29]. In this case, the flow is given by 

OC 
O--~ = ~V'. (3) 

Equation (3) has its origins in physical phenomena [3, 9]. Gage and Hamilton 
[10] proved that  a planar embedded convex curve converges to a round point 
when evolving according to (3). Grayson [11] proved that  a planar embedded 
smooth non-convex curve, remains smooth and simple, and converges to a convex 
one. Next note that  if v denotes the Euclidean arc-length, then r~hf ~ [29]. = o - ~  
Therefore, equation (3) can be written as 

c, = c , , .  (4) 

Equation (4) is not linear, since v is a time-dependent parametrization. Equation 
(4) is called the (Euclidean) geometric heat flow. This flow has been proposed 
for defining a multi-scale representation of closed curves [1, 13, 17]. Note that  
in contrast with the classical heat flow, the Euclidean geometric one defines an 
intrinsic, geometric, multi-scale representation. In order to complete the theory, 
we must prove that all the basic properties required for a scale-space hold for 
the flow (4). This is obtained directly from [10, 11] on the Euclidean geometric 
heat flow, and [3] on more general curvature dependent flows [28]. 

2.1 E u c l i d e a n  G e o m e t r i c  H e a t  F low w i t h o u t  Sh r inkage  

In the previous section, we described the Euclidean geometric heat flow, which 
can be used to replace the classical heat flow or Gaussian filtering in order to 
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obtain an intrinsic scale-space for planar curves. We show now how to modify 
this flow in order to keep the area enclosed by the evolving curve constant. 

A curve deforming according to the classical heat flow shrinks. This is due 
to the fact that  the Gaussian filter also affects low frequencies of the curve 
coordinate functions [18]. Oliensis [18] proposed to change the Gaussian kernel 
by a filter which is closer to the ideal low pass filter. This way, low frequencies 
are less affected, and less shrinkage is obtained. With this approach, which is 
also non-intrinsic, the semi-group property holds just approximately. Note that 
in [1, 5, 31] it was proved that filtering with a Gaussian kernel is the unique 
linear operation for which the causality criterion holds, i.e., zero-crossings (or 
maxima) are not created at non-zero scales. Therefore, the approach presented 
in [18], which is closed related to wavelet approaches, violates this important 
principle. 

Lowe [16] proposes to estimate the amount of shrinkage and to compensate 
for it. The estimate is based on the amount of smoothing (or) and the curvature. 
This approach, which only reduces the shrinkage problem, is again non-intrinsic, 
since it is based on Gaussian filtering, and works only for small rates of change. 
The semi-group property is violated as well. 

Horn and Weldon [12] also investigated the shrinkage problem, but only for 
convex curves. In their approach, the curve is represented by its extended circular 
image, which is the radius of curvature of the given curve as a function of the 
curve orientation. The scale-space is obtained by filtering this representation. 

We now show how to solve the shrinkage problem with the Euchdean geo- 
metric heat flow. It is important to know that  in the approach proposed below, 
the enclosed area is conserved exactly. 

When a closed curve evolves according to (2), it is easy to prove [9] that  the 
enclosed area A evolves according to 

at -  dv. 

Therefore, in the case of the Euclidean geometric heat flow we obtain (~ = ~) 

OA 
A( t )  = A0 - 2 t, (6) 

Ot 

where Ao is the area enclosed by the initial curve do. As pointed out in [9, 10, 11], 
curves evolving according to (3) can be normalized in order to keep constant area. 
The normalization process is given by a change of the time scale, from t, to r ,  
such that  a new curve is obtained via 

c b )  := r  c(t), 

where r represents the normalization factor (time scaling). (The equation can 
be normalized so that the point ~o to which g(t) shrinks is taken as the origin.) 
In the Euclidean case, r is selected such that r - or 
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The new time scale r must be chosen to obtain Atr -- 0. Define the collapse 

time T, such that limt-.T A(t)  - 0. Then, T = 2A--~. Let 

r(t) = - T  ln(T - t). (S) 

Then, since the area of C and C are related by the square of the normalization 
factor r  = 0~- 1/2, ( ~ )  .&~ - 0 for the time scaling given by (8). The evolution of 

is obtained from the evolution of C and the time scaling given by (8). Taking 
partial derivatives in (7) we have 

ad at ad 
o7- - a-,- at  - "r162 + "r = r162  + r  = r 1 6 2  + ~A/'. 

From previous Section we know that the flow above is geometric equivalent to 

0~ 
0-7 = r162 < d , ~  > ~ +  ~/ ' .  (9) 

Define the support function as p := - < C, Af >. Then, it is easy to show that 
1 ~ pdv. Therefore, applying the general area evolution equation (5) to the A =  5 

flow (9), together with the constraint -&r -= 0 ( i t ( r )  = A0), we obtain 

~(p, ~) = (~- -~o) af, 0o) 
which gives a local, area preserving, flow. Note that the flow exists for all 0 _< 
r < oo. Since C and d are related by dilations, the flows (3) and (10) have the 
same geometric properties [9, 10, 11, 28]. In particular, since a curve evolving 
according to the Euclidean heat flow satisfies all the required properties of a 
multi-scale representation, so does the normalized flow. See Figure 1, where the 
flow is implemented using the algorithm proposed in [20] for curve evolution. 

Figure 1. Example of  the area preserving Euclidean heat flow. 
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3 A f f i n e  G e o m e t r i c  H e a t  F l o w  

We present now the affine invariant evolution analogue of (3) (or (4)). For details 
see [24, 25, 27]. 

Following [24], we first consider the afflne analogue of the Euclidean heat flow 
for convex initial curves. Let s be the affine are-length [6], i.e., the simplest affine 
invariant parametrization. In this case, with Co as initial curve, ff(p, t) satisfies 
the following evolution equation (compare with equation (4)): 

off(p, t) 
ot  _ e , , ( p , t ) .  (11) 

Since the affine normal C,s is affine invariant, so is the flow (11). This flow 
was first presented and analyzed in [24]. We proved that, in analogy with the 
Euclidean heat flow, any convex curve converges to an elliptical point when 
evolving according to it (the curve remains convex as well). For other properties 
of the flow, see [24]. 

To complete the analogy between the Euclidean geometric heat flow (4), and 
the affine one given by (11), the theory must be extended to non-convex curves. 
In order to perform the extension, we have to overcome the problem of the "non- 
existence" of affine differential geometry for non-convex curves. We carry this 
out now. See [25, 27] for details. Assume now that the family of curves ff(p, ~) 
evolves according to the flow 

Off(p, t) ( 0 p inflection point, (12) 
Ot - ff~s p non-inflection point, 

with the corresponding initial condition ff(p, 0) = Co(p). Since ff,, exists for all 
non-inflection points [6], (12) is well defined also for non-convex curves. Also, due 
to the affine invariance property of the inflection points, (12) is affine invariant. 

We already know that if we are interested only in the geometry of the curve, 
i.e., Img[C], we can consider just  the Euclidean normal component of the velocity 
in (11). In [24], it was proved that the Euclidean normal component of ff,, is 
equal to nl/a. Then, for a convex initial curve, Img[ff(p, *)] = Img[C(w, t)], where 
ff(p, t) is the solution of (11), and C(w, *) is the solution of C, = al /sAf.  Since 
for an inflection point q E ff, we have ~;1/3(q) __ 0, the evolution given by (12) is 
the natural extension of the affine curve flow of convex curves given by equation 
(11). Then, equation (12) is transformed into 

Ct = ~1/3A/'- (13) 

I f e  is the solution of (12) and d is the one of (13), Img[ff] = Img[C], and Img[C] 
is an affine invariant solution of the evolution (13). Note that the image of the 
curve is affine invariant, not the curve itself. 

In [4, 27], we have proved that any smooth and simple non-convex curve 
evolving according to (13) (or (12)), remains smooth and simple, and becomes 
convex. From there, it converges into an ellipse from the results described above. 
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In [1], the authors showed that  under certain assumptions, equation (13), 
when regarded as the flow of the level sets of a 3D image, is unique in its 
affine invariance property. The uniqueness was also proved by us in [19], based 
on symmetry groups. In [4], among other results, we also extended the flow to 
initial Lipschitz curves. 

We have showed that  the flow given by (12) (or (13)) is the (unique) affine 
analogue of the Euclidean geometric heat flow given by (4). This evolution is 
called the aj~ne geometric heat flow. It defines an intrinsic, geometric, affine 
invariant multi-scale representation for planar curves. In [25], we analyzed this 
flow and showed that the multi-scale representation which we obtained, satisfies 
all the required scale-space properties. Affine invariant smoothing examples can 
be found in [25] as well. See also [26] for applications of this flow to image 
processing. 

3.1 Af f ine  G e o m e t r i c  H e a t  F l o w  W i t h o u t  Sh r inkage  

From the general evolution equation for areas (5) we have that when a curve 
evolves according to (13), the evolution of the enclosed area is given by At = 
-~al/3dv. Define the affine perimeter as L := ~[Cp, Cpv]l/Sdp [6]. Then it is 
easy to show that  L = j~ al/3dv [24], and 

At = - L .  (14) 

As in the Euclidean case, we define a normalized curve C(r) := r  
such that  when C evolves according to (13), C encloses a constant area. In this 
case, the time scaling is chosen such that  

3Z = r (15) 
Ot 

(We see from the Euclidean and affine examples that  in general, the exponent 
in -~~ = r is chosen such that  fl = r Taking partial derivatives, using the 

relations (5), (14), and (15), and constraining ~,,- = 0 (A(r)  =- A0), we obtain 
the following geometric Mfine invariant, area preserving, flow: 

0 - ; =  2-s at"  (16) 

Note that  in contrast with the Euclidean area preserving flow given by equation 
(10), the affine one is not local. This is due to the fact that the rate of area 
change in the Euclidean case is constant, but in the affine case it depends on the 
affine perimeter (which is global). 

As in the Euclidean case, the flow (16) satisfies the same geometric properties 
as the affine geometric heat flow (13). Therefore, it defines a geometric, affine 
invariant, area preserving multi-scale representation. 

Again, based on the theory of viscosity solutions, or in the new results in 
[4], the flow (13), as well as its normalized version (16), are well defined also 
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for non-smooth curves. Based on the same concepts described above, we showed 
how to derive invariant geometric heat flows for any Lie group in [27]. In [19] 
we give the characterization of all invariant flows for subgroups of the projective 
group and show that the heat flows are the simplest possible. These results are 
based on classical Lie theory and symmetry groups. The similarity group is also 
analyzed in detail, including convergence results, in [28]. 

4 L e n g t h  P r e s e r v i n g  G e o m e t r i c  F l o w s  

Similar techniques to those presented in previous sections, can be used in order 
to keep fixed other curve characteristics, e.g., the Euclidean length P. In this 
case, when C evolves according to the general geometric flow ~ = ~.M', and 
C(r) := r C(*), we obtain the following length preserving geometric flow: 

~ (p , - )  = 3 - ~ .  (17) 

The computation of (17) is performed again taking partial derivatives and using 
the relations Pt = -~j3~dv,  P = f ~pdv, together with the constraint P r  - 0. 

Since the similarity flow (scale invariant) is given by Ct = t~-lA f [28]~ its 
ed length preserving anaogue is ~ ( p ,  T) = (g-1 _ ~) Z ,  and the flow is completay 

local. Another local, length preserving flow may be obtained for the Euclidean 
constant motion given by Ct = A/. This flow models morphological dilation 
with a disk [23]. In this case, the rate of change of length is constant and the 

od ( ~ 2q', see Figure 2. A length preserving flow is given by ~r(p,r)  = 1 -  Po]  
smooth initial curve evolving with constant motion can develop singularities 
[1, 13, 23, 27], and the physically correct weak solution of the flow is the viscosity 
(or entropy) one [1, 23]. 

�9 
Figure 2. Euc l idean  cons tant  m o t i o n  and area preserv ing  form. 
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5 Concluding Remarks 

In this paper, area preserving multi-scale representations for planar shapes were 
described. The representations are obtained deforming the curve via the invariant 
geometric heat flows while simultaneously magnifying the plane by a homethety 
which keeps the enclosed area constant. The flow is geometrically intrinsic to 
the curve, and exactly satisfies all the required properties of scale-spaces. For 
the Euclidean case for example, the flow is local as well. 

The same approach was used to derive length preserving geometric flows. 
In this case, locality is obtained for example for the similarity heat flow and 
the Euclidean constant motion. Similar techniques can be used in order to keep 
other curve characteristics constant, and to transform other geometric scale- 
spaces [19, 27], into analogous area or length preserving ones. 

Different area or length preserving flows can be proposed. In [9, 22], non- 
local preserving flows are presented motivated by physical phenomena models. 
The advantage of the approach here described is that  the non-shrinking curve 
is obtained by a homothety, and the resulting normalized flow keeps all the 
geometric properties of the original one. The flow is also local in some cases. 

In [2], the importance of the Euclidean geometric heat flow for image en- 
hancement was demonstrated. This was extended for the affine geometric heat 
flow in [1, 26]. We are currently investigating the use of the corresponding area 
(or length) preserving flows for this application as well. 
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