
Computing Reachable Control States of Systems Modeled with
Uninterpreted Functions and Infinite Memory

Adrian J. Isles, Ramin Hojati and Robert K. Brayton
{aji, hojati, brayton} @eecs.berkeley.edu

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720

Abstract. We present an approach for automatically computing the set of
control states reachable in systems modeled with uninterpreted functions,
predicates and infinite memory. In general, the abstract state spaces of systems
modeled in this fashion are infinite and exact state enumeration based
procedures may not terminate. Using the Integer Combinational Sequential
(ICS) concurrency model [HB951 as our underlying formalism, we show how
'on-the-fly' state reduction techniques, which preserve control invariance
properties, can be used to significantly speed-up reachability computations on
such abstract hardware representations, collapsing infinite state spaces to finite
ones in some cases. The approach presented in this paper is automatic and if it
terminates, will produce the exact set of reachable control states of abstract
hardware models. Our techniques have been implemented in an ICS state
reachability tool and experimental results are given on several examples.

1 Introduction
The use of interpreted and uninterpreted integer functions, interpreted equality, and
interpreted memory operations has been shown to be very useful for abstracting away
the complexity of datapath found in hardware. In general, the abstract state space of a
system modeled in this fashion is infinite and exact state enumeration based
procedures may not terminate. However, many important properties that one would
like to verify of such systems can be expressed in terms of determining if a set of
control states of the system is reachable. In some cases, the infinite state spaces of
such systems can be reduced to a finite set which preserve all behaviors with respect
to such properties. In this paper, we address the problem of automatically computing
the set of reachable control states of systems described with abstract datapath
representations utilizing state reduction techniques to reduce the number of reached
states.

The Integer Combinational/Sequential (ICS) concurrency model, presented
in [HB95], can be used to model abstract hardware representations. Here, control is
represented using finite relations and latches ranging over finite domains. Control can
move data around in the datapath and can get information about their values by
applying uninterpreted or interpreted predicates to them. The datapath component
consists of variables and latches that are assigned (ICS) terms, which are abstract
representations of integer values of unbounded width. Uninterpreted functions are
provided in the datapath for performing computations. Finally, interpreted memory
operations model memory with an unbounded number of locations. An ICS state
consists of assignments of finite values to the finite latches, terms to the integer
latches, and predicates on terms. In addition, a memory is represented as a table of
address/data-value pairs, both of which are also ICS terms.

257

1.1 Our Approach
We show how automatic state reductions can be used during state enumeration when
computing the set of reachable control states of a model. Note that the set of reachable
control states is obtained by projecting the state space on to its finite latch
assignments. We also propose a new state data structure, called ICS State Pairs
(ISPs), that can be used to efficiently compute the set of reachable control states of
systems modeled with ICS. Intuitively, an ISP is a pair (c(x), d) representing a set of
ICS states all of which have the same terms assigned to integer latches, memory, and
predicates, but different assignments to the finite state variables, c(x) is an ROBDD
[Bry86] representing a set of assignments to the finite latch variables x appearing in
the model, and d a directed acyclic graph (DAG) that is a syntactical representation
of terms assigned to integer latches, memory, and predicates. During state
enumeration, the set of reachable states is stored as a set of ISPs. Transitions between
states are performed using standard image computation for the finite part, and a
special form of symbolic simulation for the integer part. State reductions [HIB97] are
also performed during symbolic simulation to minimize the number of states that need
to be explored. Using the distinction given in [CZXLC94], our approach can be
considered a combination of abstract explicit and abstract implicit state enumeration.
It is an abstract explicit technique in the sense that we do not build formulas for
alternate datapath assignments that may occur due to case splitting. Thus, an
assignment of z := mux(b, g(a,b), fix)) could result in two ISPs (b = 0, z = g(a, b))
and (b = 1, z = f (x)) . An alternative would be to represent this behavior implicitly
using a single formula, (z = g (a , b) ^ b = O) v (z = f (x) ^ b = l) , as could be done
using the approach in [CZXLC941. Of course, our approach is implicit in the sense that
we represent the finite part using BDDs and our algorithm reduces to implicit state
enumeration in the absence of datapath. By treating datapath and control separately,
we can exploit well-known techniques for manipulating each. During state
enumeration, the number of ISPs grows only in the number of different assignments
to integer assignments that have been seen.

Our approach is automatic and if it terminates will produce the exact set of
reachable control states of the system. Note that it was shown in [HIKB67] that, in
general, computing this set is undecidable. Hence, no algorithm can guarantee that it
can always compute the set of control states of every ICS model. If our procedure
does not terminate, it can still be used for partial verification, by performing
reachability for a finite number of steps (no false negatives are produced). In addition,
not only can our approach be used as a standalone verification technique, but maybe
useful in conjunction with other verification procedures that require an approximation
to the set of reachable states as input, such as the ones reported in [BD94, JDB95].

1.2 Previous Work
The modeling of hardware using uninterpreted functions has been a traditional
approach used in the theorem proving community for abstracting away datapath found
in hardware such as microprocessors [Hunt85, SB90]. Many of these techniques are
not automatic and require a great deal of user guidance. [BD94] presented an

258

automatic approach for verifying that a pipeline microprocessor, modeled with
uninterpreted functions, implements its instruction set architecture (ISA). Their
technique requires an approximation to the set of reachable states as input. One of the
primary advantages of ICS is that this ISA verification can be performed without
requiring any such state invariant from the user. However, it may be possible for our
technique to be used to compute state invariants needed as input to their approach. As
will be shown in Section 5, this is a computationally simpler task in our framework
than performing full ISA verification. Another technique that is similar in flavor to
ICS is a data structure called Multiway Decision Graphs (MDGs) [CZXLC94]. An
MDG is a decision diagram that is similar to a BDD except that it allows for
uninterpreted function symbols to be represented in the graph. Their technique is
implicit, but they do not fully model interpreted equality or interpreted memory
operations. The approaches in [Cor94, LC91] also seem similar to ours, except they
represent control states explicitly. [IHB96] implemented an algorithm for ICS
reachability as proposed in [HB95] and presented experimental results on verifying
systems modeled using ICS. The results where poor, however, due to an explosion in
the number of states on even simple designs. [HIB97] presented a set of state
reduction techniques, some of which are used in this paper, but no algorithm was
given for using them when performing reachability computations.

The flow of the rest of this paper is as follows. In Section 2, an overview of
ICS is given. The reader is encouraged to read [HB95] for a more detailed
presentation. In Section 3, we review state reduction techniques that can be used with
perform state enumeration. In Section 4, we present ISPs and show how they can be
used for reachability. In Section 5, experimental results are given.

2 A n O v e r v i e w o f I C S M o d e l s
In this section, an overview of a subset of the ICS syntax and semantics is given. ICS
models hardware are similar to conventional models representing hardware, with
additional constructs that can be used to model non-deterministic gates, integer
functions, integer predicates and infinite memory.

2.1 Syntax
The primitives consist of variables and generalized gates that can include tables,
interpreted functions and predicates, uninterpreted functions and predicates, constant
creators, latches, and memory functions.
Variables. Variables are of two types: finite and integer. Finite variables take values
from some finite domain and integer variables are assigned symbolic expressions
called ICS terms. These terms are built recursively from numerals, constants, and
interpreted and uninterpreted functions. Therefore, numerals and constants are ICS
terms, and if f is an n-ary function and t 1 , t n are ICS terms, then f (t 1 t n) is
also an ICS term.
Tables. A table is a relation defined over a set of finite variables, divided into inputs
and outputs.
Interpreted Functions and Predicates. A predefined set of functions and relations
over integers are built in. The interpreted functions are x := y and z := mux(b, x, y),

259

where x , y are integer variables and b is binary. The interpreted predicates x = y
and x = c are also allowed where c is a non-negative integer.
Uninterpreted Functions and Predicates. These are a set of function and predicate
symbols where only their arities and domain variables are given. Predicates of the
form x = term, where x is an integer variable, and term is an ICS term are also
allowed.
Constant Creators. A constant creator is a special element with no inputs which
creates a new fresh constant (i.e. a function with no argumen0 each time called. A
constant creator can be used to model unconstrained integer input.
Latches. A latch is defined on two variables over the same domain: input (or next
state) and output (or present state). Latches can either be finite or integer-valued.
Memory Functions. Two functions read and write are provided with their usual
interpretation; read is a binary function of a memory d e m e n t and a location; write is
a ternary function, whose arguments are a memory element, a location, and a value.

Defini t ion 2.1.1 A state is a triple (la tches , memories, predicates), where,
a. latches is a set of assignments to the latches.
b. memories is a set o f memory elements, where a memory element is a set of pairs o f
ICS terms, where the first denotes a location and the second a value.
c. predicates is a set o f atomic formulas, where an atomic formula is any interpreted
or uninterpreted predicate applied to ICS terms.

Defini t ion 2.1.2 The set Terms(s) of a state s denotes the set of all ICS terms, closed
under subterms, assigned to the integer latches, memories and predicates of s .

Defini t ion 2.1.3 Given two ICS terms t 1 and t2, and two sets o f atomic formulas
P = { P l , ' " P n } and Q={q l qn}, t] is equal to t 2 subject to P and Q , i f f t he

formula P~ ^ . . . ^ P , ^ q~ ^ . . . ^ q,n -+ tl = t2 is valid (i.e. true under any
interpretation, given to all constants, uninterpreted function symbols, and
uninterpreted predicates appearing in P , Q , t~, and t 2). The equality of two ICS
terms can be decided using the algorithm given in [Sho79].

2.2 Operational Semantics
Given a state s = (L, M, P) , a transition to a state s" = (L' , M ' , P ') of s is obtained
by starting from inputs and present state latch variables and assigning a value to each
variable o = g(i 1 i ,) that is consistent with its inputs i 1 i , and generalized
gate g . We denote the partial state s(g) as the values assigned to all variables,
predicates and memory before the gate g has been processed. Once all gates are
processed, we assign to L" the values given to the next state latch variables of the
partial state. Similarly, we give M ' and P ' the new assignments to M and P that
are assigned in the partial state obtained at the end of the procedure. In the following,
if i k is an integer variable, then it is assigned a term t k by s(g). Otherwise, it is
assigned a finite value z k by s(g).

260

1. I f g represents a constant creator, then introduce a new fresh constant c t and let

O = C 1 .

2. If g represents an uninterpreted function f i , then assign o the term

f i (tv tn) .
3. If g represents the function mux(i b , i v , i 2) , where i b is a binary value, and i v , i 2

are integer variables, assign o the term t v if z b = 0 and t 2 if Zb = I .

4. I fgrepresents a finite relation Rs, assign o a value zo such that

(Z 1 Z n , Z o) E Rg

5. I fgrepresentsanintegerpredicate p(i v i ,) and i f P --> p (t v tn) isval id ,
then assign o = 1. I f P ---> ~ p (t v , . . . , t n) is valid, then let o = 0. Otherwise,
create two partial states, one with o = 1 and P = P u { p (t v tn) }, and the
other with o = 0 and P = P to {~p (t v , t n) } .

6. If g represents r e a d (M k , i l) where t v is a term representing an address, if there
exists an address/value pair (a, d) E M k where P--~ t 1 = a is valid, the assign
o = d . Otherwise, perform all of the following, which may result in multiple
partial states. 1) For each memory addresses (a t , d t) ~ M k where P ---> t 1 = a t is
satisfiable, create a new partial state with P = P u { (t 1 =a t)} and o = d t . 2)
Create a new partial state with P = P u { (t v S a t) } for each (a t , d t) e M k ,
where P---> t 1 ~ a t is satisfiable. Introduce a new fresh constant d" and let
M k = M k u { (t l , d ') } and o = d ' . Case (1) corresponds to reading an address
that has previously been written. Case (2) corresponds to reading a memory
location that has never been written to before, in which case, a new constant d '
is returned.

7. If g represents w r i t e (M k , i ~ , i 2) , then proceed similarly to aread.

Note that case splitting can result in (4), (5), (6), and (7). However, the resulting state
graph is finite branching, i.e. for every state, there are a finite number of successor
states.

State enumeration can be performed by computing a fixed point starting
from the initial state of the model using the operational semantics described above.
Note that two states of a model are the same if and only if they are assigned the same
values to all latches, predicates, and memory for all interpretations given to the
uninterpreted functions, predicates and constants appearing in both states.

2.3 State Reductions for Property Verification
Verification of systems modeled with ICS can be performed via language
containment. Here properties and fairness constraints are placed only on the finite
latches in the model. Thus, any state reduction technique that preserves the sequential
behavior of all the finite variables will not cause any loss in verification accuracy.
This is notion is formally defined below.

Definition 2.3.1 Given a state s of an ICS model M , we denote by F (s) the set of
traces (strings in the language) starting from s projected onto the set of finite
variables in M . s is said to be trace equivalent to a state t iff F(s) = F(t) . s is said
to be trace contained in another state t iff F(s) c_ F(t) .

261

In [HIB97], a set of sufficient conditions was given for detecting trace equivalent ICS
states. These techniques are able to detect trace equivalent states in certain situations
where the same values are assigned to the finite variables and assignments of terms in
the integer part are different. An example of such a condition is isomorphic states.
Here we say that two states are isomorphic if renaming the set of symbolic constants
in the first state results in the second. In [HIB97], it was shown that i f two states are
isomorphic, then they are trace equivalent. An example of two isomorphic states is
given in Figure 2.1.

State s is isomorphic to state t since they are
assigned the same values to the finite latches
and renaming the constants a and

b appearing in s to c and d results in a

state that is syntactically equivalent to t .

Figure Z1

3 Detecting Trace Containment
It is easy to show that if a state t is trace contained in a state s , then the set of control
state assignments that are reachable from t are also reachable from s . Thus, if
computing the set of reachable control states is the objective, i t suffices to explore
transitions from new states that are not trace contained in previously seen states. This
optimization can not only reduce the time and space requirements during state
enumeration, but also greatly increases the chances of reaching a fixed point. In this
section, we introduce a sufficient condition, called sub-isomorphic ICS states, for [-
pdetecting trace containment between ICS states. Intuitively, a state s is sub-
isomorphic to a state t if s can be obtained from t by replacing terms with constants
and deleting extra memory locations and predicates. The formal definition is given
below.

Definition 3.2 A state s is sub-isomorphic to a state t if they both assign the same
values to the finite state variables in the model and there exists a function
n : Terms(s)---> Terms(t) where any constant in Terms(s) can map to any term in
Terms(t) and the following condition holds. 1) For each numeral i ~ Terms(s), there
exist i~ Terms(t), and n (i) = i . 2) For each term g(u I u n)~ Terms(s) with an
outermost function symbol g , n(g(u I u ,))= g (n (u 1) n (u ,)) . 3) n agrees
with all assignments of latches, memory and predicates in the state. Thus, if a term u
has been assigned to the i -th latch in s , n (u) is assigned to the i -th latch in t . For
memory, each address/value pair (a , d) e Mk in s maps to a
location (n (a), n (d)) ~ M k appearing in t . Similarly, each predicate
p(u 1 u ,)appearing in s , maps to a predicate p(n (u I), n (u n))appearing in
t .

262

In [HIB97] it was shown that deleting predicates, memory locations or replacing
terms with fresh constants results in a state with more behaviors. Theorem 3.2 uses
this to prove that sub-isomorphic checking is a sufficient condition for detecting trace
containment.

Theorem 3.2 I f s is asub-isomorphic state of t , then F(t)c F(s).
Proof. Let n:Terms(s)-->Terms(O be a function inducing a sub-isomorphism
between s and t . Construct a state t" from t by first deleting all memory locations
and predicates which according to n does not correspond to any memory location or
predicate in s . In addition, for each constant c ~ Terms(s), replace occurrences of
~t (c) ~ Terms(t) with a constant ~. Then F(t) c_ F(t'), by [HIB97]. Note t" and s
are isomorphic, i.e. one can be obtained from the other by renaming the constants of
one with the other, and thus F(t') c_ F(s).

4 ICS State Enumeration: Data Structures and Algorithms
Function ISP_Reach Function Membership

R = (c o (x), d o) ; N = R E(x) = c'(x), d = d"

while N s O { foreach (Ci(x),di)E R {
foreach (c(x), d) e N {

if isSublsomorphic(d i , d') {
foreach (c'(x), d') ~ Next((c(x), d)) { E(x) = F(x) ̂ -ci (x)

(F(x), d) = Membership(R,(c'(x), d')) if E(x) = 0 return

if E(x) ~ 0 N" = N ' u (E (x) , d ') if found = FALSE and

} islsomorphic(d i , d') }
N = N" ;N'=O d = di; found = TRUE

if .found = FALSE R = R u[(E(x), d)]

Figure 4.1 State Enumeration Using ISPs

In this section, we present new data structure, called ICS State Pairs (ISPs), for
performing state enumeration using ICS models. ISPs allow for sets of states that have
the same assignment to datapath values to be represented efficiently. Intuitively, an
ISP is a pair (c(x),d), where c(x) is an ROBDD representing a set of assignments to
the finite latch variables x , and d is a directed acyclic graph (DAG) representing
terms assigned to integer latches, memory, and predicates. Thus, (c(x), d) represents a
set of ICS states that all have the same set of ICS terms assigned to the integer
variables but may have different assignments to the finite state variables. The state
enumeration algorithm using ISPs, ISP_Reach, is presented in Figure 4.1. Here, R is
a set of ISPs representing the set of reachable states of the system and N the frontier
set. Starting from the initial state(s) of the model, represented by (Co(X),d o) , the
algorithm computes transitions to states for which there are no states in R that are
sub-isomorphic to it. Next((c(x), d)) returns a set of ISPs representing the set of states
that have one step transitions from the states in (c(x), d). Next states of the finite part

263

can be computed using BDDs. A special form of symbolic simulation is be used for
computing the next states of the integer part. The function Membersh ip searches the
set of ISPs in R and removes finite states, which have sub-isomorphic integer
assignments. Therefore, if (c f l x) , d I) is in R and a new state (c2(x) ,d 2) is found,
then the states c 2 (x) ^ c l (x) can be removed from c2(x) if d I is sub-isomorphic to
d 2 . The rest of this section presents the details of the algorithm. In Section 4.1, we
formally define ICS State Pairs and isomorphic checking using ISPs. In Section 4.2,
we discuses how transitions between states represented as ISPs are computed.

4.1 ICS State Pairs

Consider a set of ICS states S of a model M with different assignments to the finite
latch variables x = (x I x t) but with isomorphic assignments to the datapath state
variables (consisting of integer latches, predicates, and memory). We can represent S
by an ISP (c(x) , d) . Here c(x) is an ROBDD representing the characteristic function
s c : 2 t ~ {o,]} of the set of all assignments to x by the states in S . d = (V d , E d) is
a labeled directed acyclic graph that is a syntactical representation of the set of
assignments to integer latches, memory, and predicates, and is isomorphic to all
datapath assignments of states in S . This representation is an extension of a
congruence closure graph presented in [NO80] and we use their notation here. For
each vertex v ~ Vd, 2(v) represents its label, J(v) its out degree. The edges leaving
each vertex are ordered, such that v[i] is the i - th successor of v. Each term t is
represented by a vertex v t . For a constant term t = ci (or numeral), ,Tt(vt) = ci and
J(vt) = O . I f t = f i (t I t n) , then 2 (v t) = f i , b (v t) = n and vt[1] vt[n]
represent the terms t l , . . . , t n . The root vertices in d represent assignments of terms to
integer latches, memory and predicates. Thus, if v represents an assignment of t to
the integer latch l i , then 2(v) = l i , t) (v) = 1 and v[1] represents t . If v represents an
assignment of (a i , d i) t o the memory element M i, then 2 (v) = M i , J (v) = 2 a n d

v [1] and v [2] respectively represent terms a i and d i . If vrepresents an n-ary
predicate Pi (tl t n) , then it is defined similarly, except that if the predicate is
false in a state, then 2(v) = ~ P i -

Given two ISPs (cl(x) , d l) , (c2(x) ,d2) , we say that d 1 is sub-isomorphic to d 2

if there exists a function 0 :V 1 ---)V 2 such that if o (v l) = v 2 and 2 (v]) ~ c i t h e n

2 (v l) = 2 (v 2) and o (v j [i]) = v 2 [i] . If d 1 is isomorphic to d 2 , then 0 is one-to-one
and such that if 0 (v I) = v 2 , and 2(v I) = c i then 2(v2) = c i , otherwise 2(v 1) = 2(v 2) ,

and 0 (v 1 [i]) = v 2[i]. Note that for the root vertex corresponding to a latch assignment,
there is only one vertex that is can map to. However, for root vertices corresponding
to memories, there may be multiple cases, since all address/value pairs assigned in the
same memory element will have the same label. This is also the case for root vertices
corresponding to predicates, since each such vertex is only labeled by the operation
that it represents. It is straightforward to prove that two states are sub-isomorphic if
and only if their ISP representations are sub-isomorphic.

Currently, we check for isomorphism (and sub-isomorphism) by choosing a
mapping between root vertices in d 1 and d e , and then recursively mapping each
successor vertex down to the leaves. In the worst case, however, all possible cases
may have to be explored.

264

4.2 Computing ISP State Transitions
Given (c(x), d) corresponding to a set of states of M , Next(c(x) , d) computes the
set {(c~ (x), d}), (c~ (x), d 2) } representing successor states in (c(x), d) . This next
state computation is performed using a combination of an implicit technique to
represent transitions between state variables in the finite part and explicit techniques
for the integer datapath and memory. In the following, we denote by b = (b I b m)
a set of variables corresponding to predicate gates, which are 'inputs' to the finite part
from the integer part. w = (w I w n) denotes the set of variables corresponding to
'outputs' of the finite part going to the integer part, and y = (y~ Yl) denotes the
set of next state variables of the finite latches. To compute transitions between finite
states, we first create a BDD representing the transition relation, T F (x, w, b, y) , of the
finite part. This can be obtained by taking the intersection of all the finite relations in
M . Computing next states is then performed in two steps. First, we compute the
function U(w,b, y) --- qx(TF (x, w, b, y) A C(X)), which represents the set of possible
transitions of the finite part. T F (x, w, b, y) assumes that b and w are free inputs and
outputs of the finite part, therefore, some transitions in U (w , b , y) may not be
possible. Next, for each possible set of assignments of b , w, and y given in
U(w,b, y) , we compute the set of next states {d~} of the integer part by starting with
w and d and performing a special form of symbolic simulation. If the outputs of the
integer part are not consistent with b , then the transition is invalid and thrown out.
Otherwise, we create a set of pairs {(c ' (x) ,d~)} , where c'(x)corresponds to
assignments given by y . In general, since we attempt to compute d~ for each
possible assignment of b , w, and y , the number of cases that need to be considered
is equivalent to the number of minterms in U(w, b, y) . In the next section, we show
that we can consider assignments of b , w, y corresponding to a cube in U(w,b, y)
simultaneously. Since the number of cubes representing U (w , b , y) c a n be
exponentially smaller than the number of minterms, this optimization allows us to
significantly speed up next state computation. In section 4.2.2, we discuss performing
symbolic simulation of the integer part.

4.2.1 Cube Enumeration
In the following, we denote by 2 an absent literal in a cube, i.e. a don't care.
Intuitively, the absence of a literal in a cube of U(w,b, y) represents a set of
assignments that are independent of case splitting (or case removal) that may occur in
the integer part. Thus, b i = 2 implies that the set of all other assignments to b , w,
and y in the cube are the same for both b ; = 0 and b i = l . Even if b i = 0 i s
inconsistent with the datapath, the choice of b i = 1 does not require the other
assignments to b , w, and y , to be reconsidered. Below we give the procedure for
performing symbolic simulation with cubes, depending on whether the absent literal
corresponds to a mux input (w i), predicate output (b i), or next state assignment (Yi)
during symbolic execution of gates in M .
M u x Input. Assume g = mux(wi , i 1 ,i 2) and let t 1 and t 2 be the terms assigned to
i 1 and i 2 by the partial state s (g) . If P ---> t o = t 1 is valid, then assign the output t t .

265

Here both cases do not need to be considered, since they will result in the same output
assignment. If t I = c (or t 2) is an unconstrained constant (is not assign to any other
variable state), then assign o = c . Here, the case where w i = 1 is contained in the
case where w i = O. Otherwise, create two new partial states and consider both
cases w i = 0 and w i = 1 separately.
Predicate Output. Simply continue value propagation. Note that there is an additional
advantage here, since a validity check to determine the gate output value does not
need to be performed. The correctness of this procedure can be argued by the
operational semantics and the fact that it can be shown F(s)=F(sp)uF(s~)
(Sp denotes a state where a predicate p is true).
Finite Nex t State. If Yi = 2 , then the next state integer assignment are the same for
both Yi = 0 and Yi = 1 and thus both cases can be considered simultaneously.

4.2.2 Symbolic Simulation of the Datapath
Symbolic simulation is performed directly from the operational semantics. Terms are
propagated through the gates in topological order. As reflected in the operation
semantics, processing predicate gates and memory operation requires a validity check
to be performed. We use the algorithm given in [NO80] to perform this check (it can
be performed directly on the DAG). If case splitting results, case splitting results in a
new DAG being created. Note that state reductions that can be performed by deleting
extra information are also performed on-the-fly during execution of the gates of M.

5 E x p e r i m e n t a l Results
We have implemented the techniques presented in this paper in our second-generation
ICS state reachability tool. In this section, we present experimental results on using
our tool for performing both pipeline microprocessor verification and computing state
invariants. All the experiments below were performed on a DEC-Alpha server
running at 250Mhz with 1GB of main memory. Our ICS reachability tool uses the
VIS [VIS96] verification system as a front end and the Cudd BDD package [Som97].
The results of all our experiments are shown in Table 5.1. The columns consist of the
number of ICS states reached, the number of ISPs, the number of control states, and
the number of CPU seconds. In the following, a detail description is given of the
experiments that were run. For the two example that did not terminate (ITC and DLX
ISA), the results are reported until memory out occurred.

Architectural Verification. ICS can be used to perform architectural verification for
pipeline microprocessors, in which one verifies that a pipelined implementation of a
microprocessor satisfies its unpipelined specification. The unpipelined version, called
the spec, represents the instruction set architecture, which consists of the programmer
visible state and instructions. Programmer visible states include logical registers, the
program counter and memory. Intuitively, one would like to verify that for any
sequence of instructions given to both machines, when the pipeline completes, its
programmer visible state willequal the programmer visible state given in the spec.
ICS allows the pipeline processor specification and correctness criteria to be
expressed very naturally as a safety property. Starting from the initial state, we run the
two machines in parallel under the same set of instructions. A non-deterministic stall

266

is then asserted after an arbitrary number of instructions have been executed. Once the
pipeline becomes empty, a comparison is made between the architectural states of the
pipeline and the spec. One may also want to check that if a stall is asserted then the
pipeline will eventually become empty. This check, which is naturally a liveness
property, can be expressed as a safety property by showing that the number of cycles
to flush the pipeline is bounded by a constant as determined by the user. We have
applied this correctness criterion for verifying a 3-stage presented in [BCMD90,
BD94] and our tool was able to reach a fixed point (CMU ISA in Table 5.1). In
addition, we introduced two bugs into our design and our tool was able to capture
both.

We also attempted to verify the 5-stage DLX pipeline presented in [HP90]. Unlike
the 3-stage pipeline, the rates at which the DLX pipeline and its spec execute
instructions are different. We solved this problem by using an instruction memory to
model the program input and an (arbitrary) program location to denote the end of the
program (instead of a stall signal). This approach requires no synchronization between
the two machines. Our tool ran out of memory on this experiment (DLX ISA in Table
5.1), but we were able to find a bug that occurred in the branching logic of the
machine.

It is clear that our method is computationally more expensive that the techniques
presented in [BD94, JDB95]. The theoretical advantage here is in the generality and
simplicity of the specification. The practical advantage is that we do not produce false
negatives (or false positives), thus every bug that is found is a true error. Moreover,
the user doesn't need to specify a state invariant.

Computing Reachable States for lnvariance Properties. We computed the set of
reachable control states for both the CMU and DLX pipeline (without the
specification machine) and our tool was able to reach a fixed point for both examples
(CMU Invariant and DLX Invariant in Table 5.1). We also ran our tool on the Island
Tunnel Controller design presented in [FJ95] (ITC in Table 5.1). However, our
procedure did not terminate for similar reasons as those given in [ZSTCCL96].

Example ICS States ISPs Control States Time (sec)
CMU ISA 9 6 7 0.2
DLX ISA 4810 4753 33 2529.2
CMU Invariant 7 4 3 0.1
DLX Invariant 397 44 118 13.8
ITC 2996 746 18 2953.3

Table 5.1 Experimental Results

6 Conclusions
We have presented a new approach for automatically computing the set of reachable
control states of systems modeled using ICS which allows datapath to be represented
abstractly, hence enabling property verification on larger systems than what is
possible with standard BDD-based techniques. Our approach is automatic and if it
terminates will produce the exact set of reachable control states of the system. It can
also be used for partial verification, by performing teachability for a finite number of

267

steps. Our experimental results show that our approach maybe useful not only as a
standalone verification technique, but in conjunction with other verification
procedures that may require an approximation to the set of reachable control states as
input.

References
[Bry86] R. E. Bryant, "Graph Based Algorithms for Boolean Function Manipulation", IEEE
Trans. on Computers, C-35(8):677-691, August 1986.
[BCMDg0] Jerry R. Butch, E. M. Clarke, K. L. McMillan, David L. Dill, "Sequential Circuit
Verification Using Symbolic Model Checking", Proc. Of the Design Automation Conf., 1990.
[BD94] Jerry R. Burch, David L. Dill, "Automatic Verification of Pipelined Microprocessor
Control", Computer Aided Verification, Stanford, CA, June 1994.
[Cor94] F. Corella, "Automatic Verification of Behavioral Equivalence for Microprocessors",
IEEE Transactions on Computers, 43(1): 115-117, January 1994.
[CZXLC94] F. Corella, Z. Zhou, X. Song, M. Langevin, E. Cerny, "Multiway Decision Graphs
for Automated Hardware Verification", IBM technical report RC 19676, July 1994.
[FJ95] K. Fisler and S. Johnson, "Integrating Design and Verification Environments through a
Logic Supporting Hardware Designs", Proc. IFIP Conference on Hardware Description
Languages and their Applications, Chiba, Japan, Aug. 1995.
[HIX)0] John L. Hennessy, David A. Patterson, "Computer Architecture A Quantitative

Approach", Morgan Kaufmann Publishers, 1990.
[HB95] Ramin Hojati, Robert K. Brayton, "Automatic Datapath Abstraction of Hardware
Systems", Conference on Computer-Aided Verification, June 1995.
[HIB97] Ramin Hojati, Adrian J. Isles, and Robert K. Brayton, "Automatic State Reduction
Techniques for Hardware Systems Modeled Using Uninterpreted Functions and Infinite
Memory", IEEE International High Level Design Validation and Test Workshop, Nov 1997.
[HIKB97] Ramin Hojati, Adrian J. Isles, Desmond Kirkpatrick, and Robert K. Brayton,
"'Verification Using Uninterpreted Functions and Finite Instantiations", Formal Methods in
CAD, November 1996.
[Hunt85] W. A. Hunt, Jr. "'FM8501: A verified microprocessoF', Technical Report 47,
University of Texas at Austin, Institute for Computer Science, Dec. 1985.
[IHB96] Adrian J. Isles, Ramin Hojati, and Robert K. Brayton, "Reachability Analysis oflCS
Models", SRC Techcon, September 1996.
[JDB95] R.B Jones, D. L. Dill and J. R. Burch, "'Efficient Validity Checking for Processor
Verification", IEEE/ACM International Conference of Computer Aided Design, 1995
[LC91] M. Langevin, E. Cerny, "Comparing Generic State Machines", Computer Aided
Verification, July, 1991.
[NO80] Greg Nelson, Derek C. Oppen, "Fast Decision Procedures Based on Congruence
Closure", Journal of the ACM, 27(2):356-364, April 1980, June 1995.
[Sho79] R. E. Shostak, "A Practical Decision Procedure for Arithmetic With Function
Symbols", JACM Volume 26, No. 2, April 1979, pp. 351-360.
[Som97] F. Somenzi, "CUDD: CU Decision Diagram Package, Release 2.1.1 ", Department of
ECE, University of Colorado at Boulder, February 1997.
[SB90] M. Srivas and M. Bickford. "'Formal Verification ofa Pipelined Microprocessor".
IEEE Software, 7(5):52-64, Sept 1990.
[VIS96] The VIS Group, "VIS: A system for Verification and Synthesis", Conference on
Computer Aided Verification, July 1996.
[ZSTCCL96] Z. Zhou, X. Song, S. Tahar, E. Cerny, F. Corella, M. Langevin, "Formal
Verification of the Island Tunnel Controller Using Multiway Decision Graphs", Formal
Methods in Computer-Aided Design, November 1996.

