
Design Constraints in Symbolic Model Checking

Matt Kaufmann*, Andrew Martin, and Carl Pixley

Motorola, Inc.
P.O. Box 6000, MD: F52

Austin, TX 78762
carl_pixley~email.mot .corn

A b s t r a c t . A time-consuming and error-prone activity in symbolic mo-
del-checking is the construction of environments. We present a technique
for modeling environmental constraints that avoids the need for explicit
construction of environments. Moreover, our approach supports an as-
sume/guarantee style of reasoning that also supports simulation moni-

tors. We give examples of the use of constraints in PowerPC TM1 verifi-
cation.

1 I n t r o d u c t i o n

This work addresses the problem of providing a convenient way for design-
ers to specify environments for symbolic model-checking, while supporting as-
sume/guarantee reasoning.

CTL model-checking [1] is defined with respect to a closed system, that is,
a system without pr imary inputs. In practice, however, one wishes to perform
model-checking on circuits tha t have inputs, and hence are not closed. To ac-
complish this goal, one combines a model of the subject circuit with an enclosing
model of its environment.

The most general enclosing environment is an independent, nondeterministic
assignment of zeros and ones to the input pins of the circuit on each clock
edge. Many circuits, however, are designed to work correctly only under specific
environmental assumptions. Thus, in practice, the enclosing environment must
model the actual environment in which the circuit will operate.

There are at least two problems with the environment modeling approach.
The construction of such environments can be a difficult and time-consuming
procedure. Moreover, there is no clear methodology for ensuring that the en-
vironment model is a true abstraction of the actual environment in which the
subject circuit will operate.

* Matt Kaufmann's current address is: EDS CIO Services, 98 San Jacinto Blvd. Suite
500, Austin, TX 78701

1 PowerPC is a trademark of the International Business Machines Corporation, used
under license therefrom.

478

Constraints, as implemented in Motorola's Verdict model-checker, address
these two problems. They provide a simple way to model environments. More-
over, they support an assume/guarantee methodology for ensuring that the envi-
ronment models created are conservative abstractions of the actual environment
in which the circuit will operate. Constraints can be used easily as properties to
monitor during simulation of large units.

A constraint is a boolean formula involving any signals occurring in a design,
including inputs to the design. If a monitor is used, constraints may involve
signals of the monitor. Conceptually, constraints can be described in three levels
of generality. The simplest constraints involve only input signals. For example,
a constraint that inputs A, B and C are one-hot is expressed by the following
formula:

(A -F B + C)&:!(A~B)~!(A~C)&!(B&C); (I)

A second, more general, type of constraint involves signals that may depend
upon the internal state of the design. A simple example from a microprocessor
bus interface unit (BIU) is the assertion that if the BIU's address state machine
is not in state "address idle" then its transaction-start input is not asserted, that
is, if a transaction start input is asserted then the address state machine must
be in the idle state:

$ c o n s t r a i n t (t s -+ (addr_sta te = 'ADDR_IDLE)); (2)

In this more general case of constraints, the inputs of the design, which deter-
mine the "next" state, may depend combinationally upon the current signals of
the design but only on the current signals in the design, not past signals. It is a
fundamental insight of the constraint approach that often a design under verifi-
cation already contains sufficient information to determine what its input should
be. Empirically, it was observed that environments being constructed replicated
state already present in the design itself.

In the most general case of constraints, the inputs of a design depend not
only on the current state of the design but also upon the history of reactions of
the design to its inputs. In this case, it is necessary to instantiate a finite-state
machine typically referred to as a monitor to "watch" the reaction of the design
to its inputs and record information necessary to determine what the next input
should be. Informally it is clear that, with the addition of monitors, constraints
are as expressive as enclosing environment models.

One might imagine that by simply latching design inputs, one could just
restrict model checking to the constrained state space. However, the constrained
set of states may not be a Kripke model. In particular, it may be possible that
some state So is reachable from an initial constrained state through constrained
states but such that So does not have a next state that satisfies the constraints.
It is our assumption that a state is valid if it is reachable from a valid input using
constrained inputs for each step of the reachability calculation. If a "dead-end"
state such as so is encountered, this is evidence by itself that either the design
or the constraints are incorrect.

479

This use of constraints has three key advantages over the use of enclosing
environments. First, they are generally easier to write, and thus simplify the
model-checking process. Second, a constraint, which is an assumption at one
level of design hierarchy, automatically converts to an AG property, which is a
proof obligation to verify at a higher level of hierarchy. For example, the BIU
constraint converts directly into an AG property:

AG(ts ~ (addr_state = 'ADDR_IDLE)); (3)

Even in the case in which model checker capacity fails at a higher level,
the constraint provides an invariant to monitor during simulation, the failure
of which is evidence of faulty design or at least faulty specification. Thus, in a
sense, use of constraints can be viewed as an assume/guarantee methodology.
Finally, constraints document interface assumptions about design blocks in a
set of simple formulas easily understood by designers. By contrast, environment
modules constitute an awkward, unreadable, unmaintainable and unverifiable
documentation of interface assumptions.

In [2], Long describes a very general method for doing compositional rea-
soning in the context of CTL model checking. In this work, Long presents a
framework based on tableau construction. A procedure is given that constructs
a model T(¢) for an arbitrary formula ¢. that allows one to verify properties of
the form < ¢ > M < ¢ >, meaning that the composition of M with any envi-
ronment satisfying ¢ will satisfy ¢, where M is an arbitrary Kripke structure,
and %b and ¢ are arbitrary ACTL formulas. ACTL is the subset of CTL in which
all quantifiers are in essence universal.

The method involves the construction of a tableau, T(¢), that is a Kripke
structure that represents the maximal environment that satisfies ¢. The compo-
sition MIIT(¢) is then checked using standard model-checking algorithms.

The method presented here can be viewed as a special case of Long's work
that is of practical interest. Instead of considering assumptions < ¢ > with the
full generality of ACTL, we restrict attention to assumptions of the form AG(P),
where P is an elementary formula, i.e. a (boolean) formula free from temporal
operators and path quantifiers. In such cases, as we shall show, it is possible to
avoid constructing a tableau explicitly, so that no additional state is introduced
into the model provided no state is introduced explicitly on behalf of a monitor.

2 T h e M e t h o d o l o g y

2.1 M e t h o d o l o g y basics

Constraints are combinational boolean properties specified by the user at the
top level of the a design module, using the $cons t r a in t keyword. For example,
the constraint below says that signals s l and s2 cannot both be high. Verdict
uses the Verilog expression language.

$constraint(!(sl & s2));

480

Constraints that appear in the top-level module are called assumptions. Those
that appear in instantiated modules are called guarantees.

- All model-checking is performed by considering only those computat ion
paths that globally satisfy the assumptions specified by constraints in the
top level module.

- In addition to checking the specifications supplied by the user, the model-
checker will also check that all guarantees, specified by constraints in the
instantiated modules, hold for all reachable states.

2.2 A s s u m e / g u a r a n t e e reasoning

Constraints form the basis for automated assume/guarantee reasoning. Suppose
one wishes to verify a property, called ml-spec, of a module ml that is instan-
t iated inside a module m0.

One first treats ml as the top-level design, using constraints within it to
model an abstraction of its environment. Let these be called the ml-constraints.
Since ml is being treated as the top-level design, the ml-constraints will be
t reated as assumptions. Specifications within ml , the ml-specs, will be verified
only for those paths that globally satisfy these assumptions.

Next, one instantiates ml within the module m0, treating m0 as the top-level
design. It is not necessary to re-verify the ml-specs. Since ml is now an instanti-
ated module, the ml-constraints are t reated as guarantees, not as assumptions.
When verifying too, the model-checker will also verify tha t the ml-constraints
do, in fact, hold globally: for each constraint C, it checks the CTL formula AG (C).
In this way, the assumptions (ml-constraints) that were made while verifying
ml are discharged in the verification of m0.

2.3 Monitors

Monitors allow constraints to specify sequential properties in addition to com-
binational properties. A monitor is generally a (Verilog) module instantiated
within the top-level module of the design under test. Such a monitor has mul-
tiple inputs, and a single output. Conceptually, it monitors its inputs to ensure
that they are behaving as expected. For example, it could monitor the input sig-
nals and selected state of the design under test to ensure that the environment
tha t is driving them is following a given protocol. As long as things are behaving
as expected, it continues to assert its output . However, ff a protocol violation is
detected its output is lowered.

By using the output of a monitor as the input to a constraint in the top-
level module, a monitor can be used to restrict at tention to state sequences that
conform to the protocol. For example, a monitor within module ml could be
used to restrict verification of the ml-specs to the assumption tha t the inputs
to ml have a certain sequential behavior.

When m0 is subsequently verified, with ml instantiated within it, the same
monitor can be used to discharge this assumption. The constraint tha t was

481

previously t reated as an assumption, is now treated as a guarantee. The model-
checker will automatically check that the environment provided by m0 fulfills
this guarantee.

Of course, one can implement a monitor using in-line code, rather than an
instantiated module, to achieve the same effect.

3 S e m a n t i c s

A user view of constraints is explained above. Before giving the implementation
we discuss the foundations.

Below, "constraint" refers to any constraint in the top-level module. Again,
the constraints in other modules are turned into AG specs, automatically.

N o t a t i o n . For a binary relation R and a set S. Image(R, S) is the image of
S by relation R, {t e r a n g e (R) :]or some s E S, R(s,t)}.

Def in i t i on . Fix a Kripke structure M with transition relation TR, and fix a
Boolean constraint C. Let CI be the set of initial states of M that satisfy C; we
assume that CI is not empty. Define Mc to be the Kripke structure obtained
from M by replacing the initial state set with CI, and restricting the set of
states to the set CR of states reachable via C, defined as follows_ CR is the least
set S of states containing CI such that for every pair of state < s, s ~ > in T R
for which s E S and # satisfies C, then # belongs to S. In other words, CR is
the least fixed point of the following monotone functional F , where C(S) is the
set of states in S satisfying C:

F(S) = CI U [Image(TR, S) N C(S)].

The following describes the kind of structures appropriate for model-checking.
The first restriction rules out vacuous models. The second restriction is s tandard
for CTL semantics, and although it is automatically true for for traditional
hardware models, it can of course fail in the presence of constraints.

De f in i t i on . A Kripke structure is model-checkable if (1) it has at least one
initial state, and (2) every state has at least one successor state.

Our task at hand is as follows. We are given a Kripke structure M, at least
implicitly, and a Boolean constraint C. In fact, what we have in hand is the
transition relation derived from a given RTL or gate-level description, using
for example Verilog or DSL. 2 We need to verify that Mc is model-checkable.
If so, we want to do model-checking on Me . In other words, the semantics of
constraints (in the top module) are to cause the CTL model-checking to be
done on the restricted Kripke structure described above, but with a check that
model-checking is appropriate according to (1) and (2) above.

4 T h e A l g o r i t h m

There are two ways in which CTL formulas involving constraints can be evalu-
ated: with forward reachability and without. For ease of explanation, consider

DSL is an IBM proprietary RTL level description language.

482

the model in which all inputs are latched, i.e., assigned present-state ps and
next-state ns BDD variables, in addition to the usual present- and next-state
variables for the latches. In both cases, let T(ps, ns) be the transition relation
built without regard to constraints. It is assumed that the set CI of initial states
is non-empty and that all its members satisfy the constraints C. (Actually, we
form CI by intersecting the set of user-designated initial states with those that
satisfy the constraint C.)

4.1 "Without Forward Reachability" Method

Using the full model M, evaluate the CTL formula AG(C -> EX(C)). If the
formula is false, then the "without reachability" method fails and the user is
notified to use the option to verify with teachability. The model-checker could
have simply gone on using the reachability method at such a point, but users
often do not notice warnings, and because reachability is expensive it seems safer
to give the user the chance to review the situation before proceeding.

Otherwise, create a new transition relation whose range and domain satisfy
constraints C. Let this new model be Me. The rest of the evaluation is the same
as Section 4.2 of the "with reachability" method below.

4.2 "With Forward Reachability" Method

P e r f o r m i n g Forward Reachability A n a l y s i s Using the transition relation T
evaluate the formula EX (C). Perform forward reachability analysis with T in the
following way. Each time a T-forward-image is calculated, the result is intersected
with C. Check that the formula EX(C) holds for the set of newly created image
states. If the check fails, Verdict quits with an error message about reaching a
"dead-end" state. A feature that is not yet implemented would be to report a
trace from an initial state satisfying C, through a set of states all satisfying C to a
state that has no "next-state" satisfying C. This trace would show the user how
the design can get into a "dead-end" state through valid transitions satisfying
C.

Assuming that the EX(C)-check holds for each new frontier, the model check-
er has a set of states M e in hand containing the initial states C I a n d such that
for any state in M e all of its T-next states satisfying C are in Me.

Evaluating C T L F o r m u l a s Using Me, evaluate the fair states and quit if
there are no fair initial states. Modify the model again further restricting to fair
states and check CTL specifications.

It should be pointed out that there are numerous variations and optimizations
that can be made to the above algorithms. For example, one need not latch all
of the inputs to create the transition relation T - - just the inputs involved in
the constraints and the CTL properties.

Furthermore, by existentially quantifying out inputs from C one can create
C ~ which is the set of states which satisfy C for some input. Then one can

483

cofactor each component of the relation T with C'. Likewise, one can cofactor
the range of T as well.

It is important during model checking to make sure that all images and pre-
images satisfy C, intersecting with the set of states satisfying C when necessary.

5 E x a m p l e s

The use of constraints is illustrated by an example, derived from a PowerPC
microprocessor design. The example is the controller for an instruction queue.
The queue holds instructions that are waiting for operands, prior to being issued
to one of several execution units. The controller performs the following tasks:

- When it has space, and instructions are available that are destined for the
units served by this queue, it loads the instructions into the queue from the
main instruction dispatch queue.

- When an instruction is ready for execution, and an execution unit is avail-
able, it issues the instruction to that execution unit.

- It tracks which queue entries have valid instructions.
- It tracks the relative age of instructions in the queue. This age information

is used in the process of deciding whether an instruction is ready to execute.

The Original module, as it existed in the PowerPC design, had several hun-
dred primary inputs and outputs, and over a hundred internal latches. For the
purpose of this presentation, the design has been simplified Substantially by omit-
ting some functionality, by shortening the queue, and by reducing the number
of dispatch and issue ports. The clocking scheme has also been simplified from
two-phase non-overlap, to a simple positive-edge-triggered synchronous design.
However, the original design was indeed verified, and in spite of these simplifi-
cations, the basic verification issues remain unchanged from the original.

The module presented here is a queue with three entries, numbered 0, 1, and
2. It can receive up to two instructions from the main instruction dispatch queue
per cycle, and issue up to two instructions, one to each of two execution units.

It has the following primary inputs

c lk Internal latches update on the rising edge of this global clock.
iq_loads[0 : 1] A two bit input from the instruction dispatch queue. An asserted

value indicates that data is available from the corresponding port.
our_op[0 : 2] Each bit indicates whether the corresponding instruction queue

entry contains an operation that should be executed by one of the execution
units serviced by this queue.

exe0_ready is asserted when by execution unit 0 when it is ready to receive a
new instruction to execute.

exel_ready is asserted by execution unit 1 when it is ready to receive a new
instruction to execute.

ops_xeady[0 : 2] Each bit is asserted when all the operands for the corresponding
queue entry are available.

484

f lush[0 : 2] For various reasons, such as branch mis-prediction, it is sometimes
necessary to flush instructions from the queue. A queue entry will be flushed
(by resetting its valid bit) when the corresponding flush input is asserted.

and the following primary outputs

load0[0 : 1] (resp. loadl[0 : 1], load2[0 : 1]) The controller asserts l oad / [j] to
load queue element i from dispatch port j .

i s sue0 [0 : 2] (resp. i s s u e l [0: 2]) The controller asserts i s s u e / [j] to issue an
instruction from queue element j to execution unit i.

v a l i d [0 : 2] The controller'asserts va l i d [i] when queue entry i has a valid
entry.

The specifications that we wished to verify were straightforward. There were
a number of safety specifications, of the form AG (p) where P is a (non-temporal)
boolean formula expressed in terms of the inputs, outputs, and some inter-
nal signals of the module. Some were single cycle specifications, of the form
AG(P -+ AX 1~). There were also three liveness specifications of the form AG AF P.

As it turned out, to verify even relatively simple properties about this design
required some non-trivial assumptions about the design's environment. The envi-
ronmental assumptions needed to verify the safety and single-cycle specifications
were easily expressed using constraints that referenced only internal signals, pri-
mary inputs, and primary outputs. That is, no additional state was required. To
verify the liveness specifications, however, it was necessary to introduce some
additional state in order to constrain the inputs adequately.

One of the simplest constraints referred only to the primary inputs of the
design under analysis. It simply required that no instructions be dispatched
while a flush was in progress. Here and below, a vertical bar ("1") represents the
or-reduction operator, true of a multi-bit signal when at least one bit is on.

$constraint(~(Iflush[0 : 2] &: liq_ioads[0 : i])) (4)

Of primary concern to the designer of this block was the verification of the
valid bits, and the age tracking mechanism. There are state bits, q_age[0 : 2]
associated with age tracking. The bit, q_age[0] is asserted if entry 0 is older than
entry I. Bit q_age[l] is asserted if entry 0 is older than entry 2. Bit q_age[2] is
asserted if entry i is older than entry 2. Should two entries arrive simultaneously,
the entry with the smaller index is considered older. An empty queue slot is
considered "newer" than an occupied queue slot.

The age bits were verified using several CTL specifications. Here we illus-
trate only age bit q_age[0]. The specifications for the other bits are completely
analogous. Notice that in the case when one or both of valid[0] and val id[l] is
de-asserted, the value of q_age[0] is fully determined by the values of valid[0]
and valid[l] . This combinational part of the specification is captured by the
following CTL formulas. Formula 5 gives the value of q_age[0] when valid[0] is
low. Formula 6 gives the value when valid[0] is high but val id[l] is low.

AG(~valid[0] --~ -~q_age[0]) (5)

485

AG(valid[O] 8z -~valid[l] -+ q_age[O]) (6)

When both valid[0] and valid[l] are asserted, the value of q_age depends
on history. The following table shows only the possible transitions to a state in
which valid[0] and val id[l] are both high. Transitions to states in which one or
both of valid[0] and valid[l] are low are also possible, but the resulting value
of q_age[0] in such a state has been determined by formulas 5 and 6 above.

Current State Next State
valid[0] valid[l] q_age[0] valid[O] valid[l] q_age[O]

0 1 0 1 1 0
1 1 0 1 1 0
0 0 0 1 1 1
1 0 1 1 1 1
1 1 1 1 1 1

This set of transitions is expressed by the following two CTL formulas.

AG((valid[l] ~ -~q_age[O])
AX((valid[O] ~ valid[l]) -+-~q_age[O])) (7)

AG ((--~valid[l] I q_age[0]) --+
AX(valid[O] ~ valid[l]) -+ q_age[0])) (8)

One might reasonably hope that the circuit would work correctly for all sequences
of input stimulus but, unfortunately, this i§ not the case. In the chip environment~
it turns out that a queue entry is never flushed unless all of the newer entries
are flushed as well. The designer took advantage of this knowledge by omitting
some (redundant under this assumption) flush information from the equations
updating the age information. To verify this circuit, it is necessary to provide
an environment that behaves according to these assumptions.

To accomplish this, the environment must know the relative age of the entries
in the queue. One could, of course, construct an environment module that keeps
track of this information. But to do so would add considerable additional state
to the system. In our verification, we have capitalized on the fact that this
information is already present in the design under analysis. Thus, we use the
q_age bits themselves in the environment:

$const ra in t (~(f lush[0] & -~flush[1] ~: valid[0] & valid[l] ~ q_age[0])) (9)

$const ra in t (~(f lush[1] ~z ~flush[0] ~ valid[0] ~ valid[l] ~ -~q_age[0]))
(10)

On the surface, there might appear to be an alarming circularity in using the
q_age bits to constrain the environment in order to verify the correctness of
the q_age bits. However, the informal reasoning is valid. In this example, we
are assuming the correctness of q_age now in order to establish the correctness
of q_age next cycle. Note, however, that this (admittedly informal) reasoning
would not be valid if q_age were combinationally dependent upon flush. For a

4 8 6

more general treatment of this problem, in the context of abstraction, the reader
is referred to [3]

Formally, however, the constraints do nothing more than restrict the scopes
of path quantifiers in the CTL formulas to paths that globally satisfy the con-
straints. Correctness has thus been verified, under the assumption that sequences
that violate the constraints will not occur. This assumption can be discharged
formally, by model-checking the circuit within its enclosing environment, veri-
fying the spec AG(C), where C is the conjunction of the constraints above. In
practise, this circuit was already at the limits of our model-checker's capacity.
Nonetheless, the assumption can be validated informally, by checking that no
constraint is violated during unit or full-chip simulation.

Finally, we wished to verify that, under certain fairness assumptions, every
instruction queue element is eventually dispatched. These properties were easily
expressed by the CTL specifications:

AG AF~valid[0] (11)

AG AF-~valid[1] (12)

AG AF-~valid[2] (13)

As is typical with such specifications, these will only hold under certain fair-
ness assumptions. In particular, we must assume that, for each queue element,
there are both arguments and an execution unit available infinitely often. These
assumptions alone, however, are not sufficient to verify the desired properties.
The problem has to do with barriers. Some instructions are barriers, enforcing
in-order execution. A barrier cannot be issued until all the instructions that pre-
cede it have completed. Furthermore, no instruction that follows a barrier can
execute until the barrier has begun execution.

One could force the specifications to pass, by requiring that both execution
units become free simultaneously infinitely often. However, this fairness con-
straint is really too strong. What is required is that once an execution unit
becomes free, it does not become busy again until an instruction is issued to it.

To express this property using constraints requires some additional state,
beyond that which is present explicitly in the design. The monitor must re-
member previous values, both of the exe0_ready and exel_ready signals and
of the issue0 and i s s u e l signals. Let p_exe0_ready, p_exel_ready, p_issue0,
and p_issuel be the previous values of the corresponding signals. Such values
can be obtained easily in Verilog, by constructing a simple latch. The desired
constraints are simply:

$constraint(-~(-~exe0_ready ~: p_exe0_ready & -~p_issue0)) (14)

That is, it should never be the case that

- execution unit 0 is not ready now,
- execution unit 0 was ready last cycle,
- and nothing was issued to unit 0 last cycle.

487

Similarly, it is necessary to constrain the signal b a r r i e r [0 : 2] so that each
of its bits changes only when the corresponding queue entry is invalid - - being
a "barrier" is a static property of an instruction.

With these constraints, and the additional fairness constraints that require
each execution unit (independently) to be available infinitely often, it was pos-
sible to establish the desired liveness properties.

6 S u m m a r y

Our approach to handling constraints is new in several ways.

- Constraints free the user from writing environment models to generate in-
puts.

- In many cases, constraints accomplish what environments accomplish with
fewer BDD variables.

- Constraints allow the automated restriction of computation paths, for ex-
ample using monitors. Because the restriction can depend on internal state,
environment models alone cannot easily be used to accomplish this restric-
tion.

- The algorithm handles input constraints that depend on the state of the
design being verified.

- An assume/guarantee methodology allows both the assumption and verifi-
cation of constraints. Constraints as verification properties can be used with
conventional simulation validation.

- Constraints provide a convenient, easily understood method for documenting
module interfaces, which can be used to catch errors during simulation as
well as model checking.

R e f e r e n c e s

1. E.M. Clarke and E.A. Emerson, Design and Synthesis o] Synchronization Skeletons
using Branching Time Temporal Logic, Proceedings of the Workshop on Logics of
Programs, York town Heights, NY, Springer-Verlag LNCS no. 131, pp. 52 - 71, May
1981.

2. D.E. Long, "Model Checking, Abstraction, and Compositional Verification," School
of Computer Science, Carnegie Mellon University publication CMU-CS-93-178, July
1993.

3. K. L. McMillan, "A Compositional Rule for Hardware Design Refinement," Orna
Grunberg (Ed.) Computer Aided Verification, Proceedings of the 9th International
Conference, Haifa, Israel, Springer-Verlag LNCS no. 1254, pp. 24 - 35, June 1997.

