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A b s t r a c t .  A time-consuming and error-prone activity in symbolic mo- 
del-checking is the construction of environments. We present a technique 
for modeling environmental constraints that avoids the need for explicit 
construction of environments. Moreover, our approach supports an as- 
sume/guarantee style of reasoning that also supports simulation moni- 

tors. We give examples of the use of constraints in PowerPC TM1 verifi- 
cation. 

1 I n t r o d u c t i o n  

This work addresses the problem of providing a convenient way for design- 
ers to specify environments for symbolic model-checking, while supporting as- 
sume/guarantee  reasoning. 

CTL model-checking [1] is defined with respect to a closed system, that  is, 
a system without pr imary inputs. In practice, however, one wishes to perform 
model-checking on circuits tha t  have inputs, and hence are not closed. To ac- 
complish this goal, one combines a model of the subject circuit with an enclosing 
model of its environment. 

The most general enclosing environment is an independent, nondeterministic 
assignment of zeros and ones to the input pins of the circuit on each clock 
edge. Many circuits, however, are designed to work correctly only under specific 
environmental assumptions. Thus, in practice, the enclosing environment must 
model the actual environment in which the circuit will operate. 

There are at least two problems with the environment modeling approach. 
The construction of such environments can be a difficult and time-consuming 
procedure. Moreover, there is no clear methodology for ensuring that  the en- 
vironment model is a true abstraction of the actual environment in which the 
subject circuit will operate.  

* Matt Kaufmann's current address is: EDS CIO Services, 98 San Jacinto Blvd. Suite 
500, Austin, TX 78701 

1 PowerPC is a trademark of the International Business Machines Corporation, used 
under license therefrom. 
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Constraints, as implemented in Motorola's Verdict model-checker, address 
these two problems. They provide a simple way to model environments. More- 
over, they support an assume/guarantee methodology for ensuring that the envi- 
ronment models created are conservative abstractions of the actual environment 
in which the circuit will operate. Constraints can be used easily as properties to 
monitor during simulation of large units. 

A constraint is a boolean formula involving any signals occurring in a design, 
including inputs to the design. If a monitor is used, constraints may involve 
signals of the monitor. Conceptually, constraints can be described in three levels 
of generality. The simplest constraints involve only input signals. For example, 
a constraint that inputs A, B and C are one-hot is expressed by the following 
formula: 

(A -F B + C)&:!(A~B)~!(A~C)&!(B&C); (I) 

A second, more general, type of constraint involves signals that may depend 
upon the internal state of the design. A simple example from a microprocessor 
bus interface unit (BIU) is the assertion that if the BIU's address state machine 
is not in state "address idle" then its transaction-start input is not asserted, that 
is, if a transaction start input is asserted then the address state machine must 
be in the idle state: 

$ c o n s t r a i n t ( t s  -+ (addr_sta te  = 'ADDR_IDLE)); (2) 

In this more general case of constraints, the inputs of the design, which deter- 
mine the "next" state, may depend combinationally upon the current signals of 
the design but only on the current signals in the design, not past signals. It is a 
fundamental insight of the constraint approach that often a design under verifi- 
cation already contains sufficient information to determine what its input should 
be. Empirically, it was observed that environments being constructed replicated 
state already present in the design itself. 

In the most general case of constraints, the inputs of a design depend not 
only on the current state of the design but also upon the history of reactions of 
the design to its inputs. In this case, it is necessary to instantiate a finite-state 
machine typically referred to as a monitor to "watch" the reaction of the design 
to its inputs and record information necessary to determine what the next input 
should be. Informally it is clear that, with the addition of monitors, constraints 
are as expressive as enclosing environment models. 

One might imagine that by simply latching design inputs, one could just 
restrict model checking to the constrained state space. However, the constrained 
set of states may not be a Kripke model. In particular, it may be possible that 
some state So is reachable from an initial constrained state through constrained 
states but such that So does not have a next state that satisfies the constraints. 
It is our assumption that a state is valid if it is reachable from a valid input using 
constrained inputs for each step of the reachability calculation. If a "dead-end" 
state such as so is encountered, this is evidence by itself that either the design 
or the constraints are incorrect. 
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This use of constraints has three key advantages over the use of enclosing 
environments. First, they are generally easier to write, and thus simplify the 
model-checking process. Second, a constraint, which is an assumption at one 
level of design hierarchy, automatically converts to an AG property, which is a 
proof obligation to verify at a higher level of hierarchy. For example, the BIU 
constraint converts directly into an AG property: 

AG(ts ~ (addr_state = 'ADDR_IDLE)); (3) 

Even in the case in which model checker capacity fails at a higher level, 
the constraint provides an invariant to monitor during simulation, the failure 
of which is evidence of faulty design or at least faulty specification. Thus, in a 
sense, use of constraints can be viewed as an assume/guarantee methodology. 
Finally, constraints document interface assumptions about design blocks in a 
set of simple formulas easily understood by designers. By contrast, environment 
modules constitute an awkward, unreadable, unmaintainable and unverifiable 
documentation of interface assumptions. 

In [2], Long describes a very general method for doing compositional rea- 
soning in the context of CTL model checking. In this work, Long presents a 
framework based on tableau construction. A procedure is given that constructs 
a model T(¢) for an arbitrary formula ¢. that allows one to verify properties of 
the form < ¢ > M < ¢ >, meaning that the composition of M with any envi- 
ronment satisfying ¢ will satisfy ¢, where M is an arbitrary Kripke structure, 
and %b and ¢ are arbitrary ACTL formulas. ACTL is the subset of CTL in which 
all quantifiers are in essence universal. 

The method involves the construction of a tableau, T(¢), that is a Kripke 
structure that represents the maximal environment that satisfies ¢. The compo- 
sition MIIT(¢) is then checked using standard model-checking algorithms. 

The method presented here can be viewed as a special case of Long's work 
that is of practical interest. Instead of considering assumptions < ¢ > with the 
full generality of ACTL, we restrict attention to assumptions of the form AG(P), 
where P is an elementary formula, i.e. a (boolean) formula free from temporal 
operators and path quantifiers. In such cases, as we shall show, it is possible to 
avoid constructing a tableau explicitly, so that no additional state is introduced 
into the model provided no state is introduced explicitly on behalf of a monitor. 

2 T h e  M e t h o d o l o g y  

2.1 M e t h o d o l o g y  basics 

Constraints are combinational boolean properties specified by the user at the 
top level of the a design module, using the $cons t r a in t  keyword. For example, 
the constraint below says that signals s l  and s2 cannot both be high. Verdict 
uses the Verilog expression language. 

$constraint(!(sl & s2)); 
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Constraints that  appear in the top-level module are called assumptions. Those 
that  appear in instantiated modules are called guarantees. 

- All model-checking is performed by considering only those computat ion 
paths that  globally satisfy the assumptions specified by constraints in the 
top level module. 

- In addition to checking the specifications supplied by the user, the model- 
checker will also check that  all guarantees, specified by constraints in the 
instantiated modules, hold for all reachable states. 

2.2 A s s u m e / g u a r a n t e e  reasoning 

Constraints form the basis for automated assume/guarantee reasoning. Suppose 
one wishes to verify a property, called ml-spec,  of a module ml that  is instan- 
t iated inside a module m0. 

One first treats ml  as the top-level design, using constraints within it to 
model an abstraction of its environment. Let these be called the ml-constraints.  
Since ml is being treated as the top-level design, the ml-constraints  will be 
t reated as assumptions. Specifications within ml ,  the ml-specs, will be verified 
only for those paths that  globally satisfy these assumptions. 

Next, one instantiates ml  within the module m0, treating m0 as the top-level 
design. It is not necessary to re-verify the ml-specs. Since ml is now an instanti- 
ated module, the ml-constraints are t reated as guarantees, not as assumptions. 
When verifying too, the model-checker will also verify tha t  the ml-constraints  
do, in fact, hold globally: for each constraint C, it checks the CTL formula AG (C). 
In this way, the assumptions (ml-constraints) that  were made while verifying 
ml are discharged in the verification of m0. 

2.3 Monitors 

Monitors allow constraints to specify sequential properties in addition to com- 
binational properties. A monitor is generally a (Verilog) module instantiated 
within the top-level module of the design under test. Such a monitor has mul- 
tiple inputs, and a single output.  Conceptually, it monitors its inputs to ensure 
that  they are behaving as expected. For example, it could monitor the input sig- 
nals and selected state of the design under test to ensure that  the environment 
tha t  is driving them is following a given protocol. As long as things are behaving 
as expected, it continues to assert its output .  However, ff a protocol violation is 
detected its output  is lowered. 

By using the output  of a monitor as the input to a constraint in the top- 
level module, a monitor can be used to restrict at tention to state sequences that  
conform to the protocol. For example, a monitor within module ml  could be 
used to restrict verification of the ml-specs to  the assumption tha t  the inputs 
to ml  have a certain sequential behavior. 

When m0 is subsequently verified, with ml instantiated within it, the same 
monitor can be used to discharge this assumption. The constraint tha t  was 
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previously t reated as an assumption, is now treated as a guarantee. The model- 
checker will automatically check that  the environment provided by m0 fulfills 
this guarantee. 

Of course, one can implement a monitor using in-line code, rather  than an 
instantiated module, to achieve the same effect. 

3 S e m a n t i c s  

A user view of constraints is explained above. Before giving the implementation 
we discuss the foundations. 

Below, "constraint" refers to any constraint in the top-level module. Again, 
the constraints in other modules are turned into AG specs, automatically. 

N o t a t i o n .  For a binary relation R and a set S. Image(R, S) is the image of 
S by relation R, {t  e r a n g e ( R )  : ]or some s E S, R(s,t)}. 

Def in i t i on .  Fix a Kripke structure M with transition relation TR, and fix a 
Boolean constraint C. Let CI be the set of initial states of M that  satisfy C; we 
assume that  CI is not empty. Define Mc to be the Kripke structure obtained 
from M by replacing the initial state set with CI, and restricting the set of 
states to the set CR of states reachable via C, defined as follows_ CR is the least 
set S of states containing CI such that  for every pair of state < s, s ~ > in T R  
for which s E S and # satisfies C, then # belongs to S. In other words, CR is 
the least fixed point of the following monotone functional F ,  where C(S) is the 
set of states in S satisfying C: 

F(S) = CI U [Image(TR, S) N C(S)]. 

The following describes the kind of structures appropriate for model-checking. 
The first restriction rules out vacuous models. The second restriction is s tandard 
for CTL semantics, and although it is automatically true for for traditional 
hardware models, it can of course fail in the presence of constraints. 

De f in i t i on .  A Kripke structure is model-checkable if (1) it has at least one 
initial state, and (2) every state has at least one successor state. 

Our task at hand is as follows. We are given a Kripke structure M, at least 
implicitly, and a Boolean constraint C. In fact, what we have in hand is the 
transition relation derived from a given RTL or gate-level description, using 
for example Verilog or DSL. 2 We need to verify that  Mc is model-checkable. 
If so, we want to do model-checking on Me .  In other words, the semantics of 
constraints (in the top module) are to cause the CTL model-checking to be 
done on the restricted Kripke structure described above, but  with a check that  
model-checking is appropriate according to (1) and (2) above. 

4 T h e  A l g o r i t h m  

There are two ways in which CTL formulas involving constraints can be evalu- 
ated: with forward reachability and without. For ease of explanation, consider 

DSL is an IBM proprietary RTL level description language. 
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the model in which all inputs are latched, i.e., assigned present-state ps and 
next-state ns BDD variables, in addition to the usual present- and next-state 
variables for the latches. In both cases, let T(ps, ns) be the transition relation 
built without regard to constraints. It is assumed that  the set CI of initial states 
is non-empty and that  all its members satisfy the constraints C. (Actually, we 
form CI by intersecting the set of user-designated initial states with those that  
satisfy the constraint C.) 

4.1 "Without Forward Reachability" Method 

Using the full model M,  evaluate the CTL formula AG(C -> EX(C)). If the 
formula is false, then the "without reachability" method fails and the user is 
notified to  use the option to verify with teachability. The model-checker could 
have simply gone on using the reachability method at such a point, but  users 
often do not notice warnings, and because reachability is expensive it seems safer 
to give the user the chance to review the situation before proceeding. 

Otherwise, create a new transition relation whose range and domain satisfy 
constraints C. Let this new model be Me. The rest of the evaluation is the same 
as Section 4.2 of the "with reachability" method below. 

4.2 "With Forward Reachability" Method 

P e r f o r m i n g  Forward Reachability A n a l y s i s  Using the transition relation T 
evaluate the formula EX (C). Perform forward reachability analysis with T in the 
following way. Each time a T-forward-image is calculated, the result is intersected 
with C. Check that  the formula EX(C) holds for the set of newly created image 
states. If the check fails, Verdict quits with an error message about  reaching a 
"dead-end" state. A feature that  is not yet implemented would be to report  a 
trace from an initial state satisfying C, through a set of states all satisfying C to a 
state that  has no "next-state" satisfying C. This trace would show the user how 
the design can get into a "dead-end" state through valid transitions satisfying 
C. 

Assuming that  the EX(C)-check holds for each new frontier, the model check- 
er has a set of states M e  in hand containing the initial states C I a n d  such that  
for any state in M e  all of its T-next  states satisfying C are in Me.  

Evaluating C T L  F o r m u l a s  Using Me, evaluate the fair states and quit if 
there are no fair initial states. Modify the model again further restricting to fair 
states and check CTL specifications. 

It should be pointed out that  there are numerous variations and optimizations 
that  can be made to  the above algorithms. For example, one need not latch all 
of the inputs to create the transition relation T - -  just the inputs involved in 
the constraints and the CTL properties. 

Furthermore,  by existentially quantifying out inputs from C one can create 
C ~ which is the set of states which satisfy C for some input. Then one can 
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cofactor each component of the relation T with C'. Likewise, one can cofactor 
the range of T as well. 

It is important during model checking to make sure that all images and pre- 
images satisfy C, intersecting with the set of states satisfying C when necessary. 

5 E x a m p l e s  

The use of constraints is illustrated by an example, derived from a PowerPC 
microprocessor design. The example is the controller for an instruction queue. 
The queue holds instructions that are waiting for operands, prior to being issued 
to one of several execution units. The controller performs the following tasks: 

- When it has space, and instructions are available that are destined for the 
units served by this queue, it loads the instructions into the queue from the 
main instruction dispatch queue. 

- When an instruction is ready for execution, and an execution unit is avail- 
able, it issues the instruction to that execution unit. 

- It tracks which queue entries have valid instructions. 
- It tracks the relative age of instructions in the queue. This age information 

is used in the process of deciding whether an instruction is ready to execute. 

The Original module, as it existed in the PowerPC design, had several hun- 
dred primary inputs and outputs, and over a hundred internal latches. For the 
purpose of this presentation, the design has been simplified Substantially by omit- 
ting some functionality, by shortening the queue, and by reducing the number 
of dispatch and issue ports. The clocking scheme has also been simplified from 
two-phase non-overlap, to a simple positive-edge-triggered synchronous design. 
However, the original design was indeed verified, and in spite of these simplifi- 
cations, the basic verification issues remain unchanged from the original. 

The module presented here is a queue with three entries, numbered 0, 1, and 
2. It can receive up to two instructions from the main instruction dispatch queue 
per cycle, and issue up to two instructions, one to each of two execution units. 

It has the following primary inputs 

c lk  Internal latches update on the rising edge of this global clock. 
iq_loads[0 : 1] A two bit input from the instruction dispatch queue. An asserted 

value indicates that data is available from the corresponding port. 
our_op[0 : 2] Each bit indicates whether the corresponding instruction queue 

entry contains an operation that should be executed by one of the execution 
units serviced by this queue. 

exe0_ready is asserted when by execution unit 0 when it is ready to receive a 
new instruction to execute. 

exel_ready is asserted by execution unit 1 when it is ready to receive a new 
instruction to execute. 

ops_xeady[0 : 2] Each bit is asserted when all the operands for the corresponding 
queue entry are available. 
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f lush[0 : 2] For various reasons, such as branch mis-prediction, it is sometimes 
necessary to flush instructions from the queue. A queue entry will be flushed 
(by resetting its valid bit) when the corresponding flush input is asserted. 

and the following primary outputs 

load0[0 : 1] (resp. loadl[0 : 1], load2[0 : 1]) The controller asserts l oad / [ j ]  to 
load queue element i from dispatch port j .  

i s sue0  [0 : 2] (resp. i s s u e l  [0: 2]) The controller asserts i s s u e / [ j ]  to issue an 
instruction from queue element j to execution unit i. 

v a l i d [ 0 : 2 ]  The controller'asserts va l i d [ i ]  when queue entry i has a valid 
entry. 

The specifications that we wished to verify were straightforward. There were 
a number of safety specifications, of the form AG (p) where P is a (non-temporal) 
boolean formula expressed in terms of the inputs, outputs, and some inter- 
nal signals of the module. Some were single cycle specifications, of the form 
AG(P -+ AX 1~). There were also three liveness specifications of the form AG AF P. 

As it turned out, to verify even relatively simple properties about this design 
required some non-trivial assumptions about the design's environment. The envi- 
ronmental assumptions needed to verify the safety and single-cycle specifications 
were easily expressed using constraints that referenced only internal signals, pri- 
mary inputs, and primary outputs. That is, no additional state was required. To 
verify the liveness specifications, however, it was necessary to introduce some 
additional state in order to constrain the inputs adequately. 

One of the simplest constraints referred only to the primary inputs of the 
design under analysis. It simply required that no instructions be dispatched 
while a flush was in progress. Here and below, a vertical bar ("1") represents the 
or-reduction operator, true of a multi-bit signal when at least one bit is on. 

$constraint(~(Iflush[0 : 2] &: liq_ioads[0 : i])) (4) 

Of primary concern to the designer of this block was the verification of the 
valid bits, and the age tracking mechanism. There are state bits, q_age[0 : 2] 
associated with age tracking. The bit, q_age[0] is asserted if entry 0 is older than 
entry I. Bit q_age[l] is asserted if entry 0 is older than entry 2. Bit q_age[2] is 
asserted if entry i is older than entry 2. Should two entries arrive simultaneously, 
the entry with the smaller index is considered older. An empty queue slot is 
considered "newer" than an occupied queue slot. 

The age bits were verified using several CTL specifications. Here we illus- 
trate only age bit q_age[0]. The specifications for the other bits are completely 
analogous. Notice that in the case when one or both of valid[0] and val id[ l ]  is 
de-asserted, the value of q_age[0] is fully determined by the values of valid[0] 
and valid[l] .  This combinational part of the specification is captured by the 
following CTL formulas. Formula 5 gives the value of q_age[0] when valid[0] is 
low. Formula 6 gives the value when valid[0] is high but val id[ l ]  is low. 

AG(~valid[0] --~ -~q_age[0]) (5) 
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AG(valid[O] 8z -~valid[l] -+ q_age[O]) (6) 

When both valid[0] and valid[l]  are asserted, the value of q_age depends 
on history. The following table shows only the possible transitions to a state in 
which valid[0] and val id[ l]  are both high. Transitions to states in which one or 
both of valid[0] and valid[l]  are low are also possible, but the resulting value 
of q_age[0] in such a state has been determined by formulas 5 and 6 above. 

Current State Next State 
valid[0] valid[l] q_age[0] valid[O] valid[l] q_age[O] 

0 1 0 1 1 0 
1 1 0 1 1 0 
0 0 0 1 1 1 
1 0 1 1 1 1 
1 1 1 1 1 1 

This set of transitions is expressed by the following two CTL formulas. 

AG((valid[l] ~ -~q_age[O]) 
AX((valid[O] ~ valid[l]) -+-~q_age[O])) (7) 

AG ((--~valid[l] I q_age[0]) --+ 
AX(valid[O] ~ valid[l]) -+ q_age[0])) (8) 

One might reasonably hope that the circuit would work correctly for all sequences 
of input stimulus but, unfortunately, this i§ not the case. In the chip environment~ 
it turns out that a queue entry is never flushed unless all of the newer entries 
are flushed as well. The designer took advantage of this knowledge by omitting 
some (redundant under this assumption) flush information from the equations 
updating the age information. To verify this circuit, it is necessary to provide 
an environment that behaves according to these assumptions. 

To accomplish this, the environment must know the relative age of the entries 
in the queue. One could, of course, construct an environment module that keeps 
track of this information. But to do so would add considerable additional state 
to the system. In our verification, we have capitalized on the fact that this 
information is already present in the design under analysis. Thus, we use the 
q_age bits themselves in the environment: 

$const ra in t (~(f lush[0]  & -~flush[1] ~: valid[0] & valid[l]  ~ q_age[0])) (9) 

$const ra in t (~(f lush[1]  ~z ~flush[0] ~ valid[0] ~ valid[l]  ~ -~q_age[0])) 
(10) 

On the surface, there might appear to be an alarming circularity in using the 
q_age bits to constrain the environment in order to verify the correctness of 
the q_age bits. However, the informal reasoning is valid. In this example, we 
are assuming the correctness of q_age now in order to establish the correctness 
of q_age next cycle. Note, however, that this (admittedly informal) reasoning 
would not be valid if q_age were combinationally dependent upon flush. For a 
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more general treatment of this problem, in the context of abstraction, the reader 
is referred to [3] 

Formally, however, the constraints do nothing more than restrict the scopes 
of path quantifiers in the CTL formulas to paths that globally satisfy the con- 
straints. Correctness has thus been verified, under the assumption that sequences 
that violate the constraints will not occur. This assumption can be discharged 
formally, by model-checking the circuit within its enclosing environment, veri- 
fying the spec AG(C), where C is the conjunction of the constraints above. In 
practise, this circuit was already at the limits of our model-checker's capacity. 
Nonetheless, the assumption can be validated informally, by checking that no 
constraint is violated during unit or full-chip simulation. 

Finally, we wished to verify that, under certain fairness assumptions, every 
instruction queue element is eventually dispatched. These properties were easily 
expressed by the CTL specifications: 

AG AF~valid[0] (11) 

AG AF-~valid[1] (12) 

AG AF-~valid[2] (13) 

As is typical with such specifications, these will only hold under certain fair- 
ness assumptions. In particular, we must assume that, for each queue element, 
there are both arguments and an execution unit available infinitely often. These 
assumptions alone, however, are not sufficient to verify the desired properties. 
The problem has to do with barriers. Some instructions are barriers, enforcing 
in-order execution. A barrier cannot be issued until all the instructions that pre- 
cede it have completed. Furthermore, no instruction that follows a barrier can 
execute until the barrier has begun execution. 

One could force the specifications to pass, by requiring that both execution 
units become free simultaneously infinitely often. However, this fairness con- 
straint is really too strong. What is required is that once an execution unit 
becomes free, it does not become busy again until an instruction is issued to it. 

To express this property using constraints requires some additional state, 
beyond that which is present explicitly in the design. The monitor must re- 
member previous values, both of the exe0_ready and exel_ready signals and 
of the issue0 and i s s u e l  signals. Let p_exe0_ready, p_exel_ready, p_issue0, 
and p_issuel  be the previous values of the corresponding signals. Such values 
can be obtained easily in Verilog, by constructing a simple latch. The desired 
constraints are simply: 

$constraint(-~(-~exe0_ready ~: p_exe0_ready & -~p_issue0)) (14) 

That is, it should never be the case that 

- execution unit 0 is not ready now, 
- execution unit 0 was ready last cycle, 
- and nothing was issued to unit 0 last cycle. 
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Similarly, it is necessary to constrain the signal b a r r i e r [ 0  : 2] so that  each 
of its bits changes only when the corresponding queue entry is invalid - -  being 
a "barrier" is a static property of an instruction. 

With these constraints, and the additional fairness constraints that  require 
each execution unit (independently) to be available infinitely often, it was pos- 
sible to establish the desired liveness properties. 

6 S u m m a r y  

Our approach to handling constraints is new in several ways. 

- Constraints free the user from writing environment models to generate in- 
puts. 

- In many cases, constraints accomplish what environments accomplish with 
fewer BDD variables. 

- Constraints allow the automated restriction of computation paths, for ex- 
ample using monitors. Because the restriction can depend on internal state, 
environment models alone cannot easily be used to accomplish this restric- 
tion. 

- The algorithm handles input constraints that  depend on the state of the 
design being verified. 

- An assume/guarantee methodology allows both the assumption and verifi- 
cation of constraints. Constraints as verification properties can be used with 
conventional simulation validation. 

- Constraints provide a convenient, easily understood method for documenting 
module interfaces, which can be used to catch errors during simulation as 
well as model checking. 
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