Abstract
Consider a discrete universe {U := {(x,y) ∈ Z 2 | 1 ≤ x,y ≤ n}. We give a natural definition for Voronoi diagrams in such a universe. This Discrete Voronoi Diagram may be considered as the digitization of the well-known Voronoi diagram in the plane.
We give an O(log n) algorithm to compute the discrete Voronoi diagram for the L 1-metric on the mesh of trees architecture and we give some evidence from number theory that leads us to the conjecture that it is not possible to compute the Discrete Voronoi diagram in the Euclidean metric in polylogarithmic time on that architecture.
Instead, we give an O(log3 n) algorithm to compute an approximation for any L κ-metric, 1 ≤ κ ≤ ∞.
Using a result by Miller and Stout, it is easy to show that there exist polynomial lower bounds for this problem on the pyramid architecture, which is currently the most popular architecture in the image processing community.
Finally, we give an O(log2 n) algorithm to compute the Delaunay Triangulation of points in a discrete universe, and use this to build a space-time efficient VLSI-circuit for the computation of Delaunay Triangulations.
This research was supported by the DFG under Grant Al 253/1-1
Preview
Unable to display preview. Download preview PDF.
References
K. E. Batcher. Design of a Massively Parallel Processor. IEEE Trans. Computers, Vol. 28, 1980, 836–840
R. P. Brent and H. T. Kung. The Chip Complexity of Binary Arithmetic. 12th Symp. on the Theory of Computing, 1980, 190–200
E. R. Dyer. A VLSI pyramid machine for hierarchical parallel image processing. Proc. IEEE Conf. on Pattern Recognition and Image Processing, 1981
C. R. Dyer and A. Rosenfeld. Triangle Cellular Automata. Information and Control, Vol. 48, 1981, 54–69
F. Fricker. Einführung in die Gitterpunktlehre. Birkhäuser, Basel Boston Stuttgart, 1982.
C. F. Gauss. Disquisitiones arithmeticae. Leipzig 1801 (engl. ed. Springer 1986)
W. Henze. Zur VLSI-Kompliziertheit geometrischer Berechnungsprobleme. Seminarbericht Nr. 76, Humboldt-Universität Berlin, 1985
E. Hlawka. Theorie der Gleichverteilung. Bibliographisches Institut, Mannheim, 1979
F. T. Leighton. New lower bound techniques for VLSI. 22nd FOCS 1981
R. Miller and Q. F. Stout. Pyramid Computer Algorithms for Determining Geometric Properties of Images. Proc. Symp. on Computational Geometry 1985, ACM, 263–271
R. Miller and Q. F. Stout. Geometric Algorithms for Digitized Pictures on a Mesh-Connected Computer. IEEE PAMI, Vol. 7 (1985) 216–228
R. Miller and Q. F. Stout. Data Movement Techniques for the Pyramid Computer. SIAM J. Computing 16 (1987),38–60
D. Nassimi and S. Sahni. Finding Connected Components and Connected Ones on a Mesh-Connected Parallel Computer. SIAM J. Computing 9 (1980),744–757
D. Nath, S. N. Maheshwari and P. C. P. Bhat. Efficient VLSI networks for parallel processing based on Orthogonal Trees. IEEE Trans. Computers, 1983
V. K. Prasanna Kumar and M. Eshaghian. Parallel Geometric algorithms for Digitized pictures on the Mesh of Trees organization. International Conference on Parallel Processing, 1986
V. K. Prasanna Kumar and C. S. Raghavendra. Array Processor with Multiple Broadcasting. Proc. of the 1985 Symp. on Computer Architecture, 1985
V. K. Prasanna Kumar and D. Reisis. Parallel Image Processing on Enhanced Arrays. Dept. of Elect. Eng. Systems, USC Los Angeles, 1985
F. P. Preparata and M. I. Shamos. Computational Geometry. Springer 1985
F.P. Preparata and J. Vuillemin. The Cube Connected Cycles: A Versatile Network for Parallel Computation. CACM 24(1981) 5, 300–309
A. Rosenfeld. Parallel Image Processing Using Cellular Arrays. IEEE Computer, 1983, 14–20
O. Schwarzkopf. Parallel Computation of Discrete Voronoi Diagrams. Preprint B 88-03, Freie Universität Berlin, FB Mathematik
Q. F. Stout. Mesh-Connected Computers with Broadcasting. IEEE Trans. Computers 32, 1983, 826–830
Q. F. Stout. Pyramid Computer Solutions of the Closest Pair Problem. J. of Algorithms 6, 1985, 200–212
Q. F. Stout. Meshes with Multiple Buses. 27th FOCS 1986, 264–273
S. L. Tanimoto. A Pyramidal approach to Parallel Processing. Proc. 1983 International Symp. on Computer Architecture
L. Uhr. Algorithm-Structured Computer Arrays and Networks. Academic Press, 1984
J. D. Ullman. Computational Aspects of VLSI. Computer Science Press, 1984
S. H. Unger. A Computer Oriented Toward Spatial Problems. Proc. IRE, Vol. 46, 1958, 1744–1750
S. H. Unger. Pattern Detection and Recognition. Proc. IRE, Vol. 47, 1959, 1737–1752
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schwarzkopf, O. (1989). Parallel computation of discrete Voronoi diagrams. In: Monien, B., Cori, R. (eds) STACS 89. STACS 1989. Lecture Notes in Computer Science, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028984
Download citation
DOI: https://doi.org/10.1007/BFb0028984
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-50840-3
Online ISBN: 978-3-540-46098-5
eBook Packages: Springer Book Archive