Skip to main content

Shortest edge-disjoint paths in graphs

  • Contributed Papers
  • Conference paper
  • First Online:
STACS 89 (STACS 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 349))

Included in the following conference series:

  • 171 Accesses

Abstract

A graph G is called n-geodetically edge-connected if the removal of any n-1 edges does not increase the distance between any pair of non-adjacent vertices. We prove that if G is n-geodetically edge-connected, n≠2, then for any 2n pairwise distinct vertices s1,t1,...,sn,tn there are n pairwise edge-disjoint paths P1,...,Pn such that Pi connects si and ti and the length of Pi equals the distance of si and ti for 1≤i≤n. We also give a solution for n=2. Moreover, we present for each nε IN a polynomial algorithm that takes a n-geodetically edge-connected graph and the vertices s1,t1,...,sn,tn as input and determines n shortest edge-disjoint paths as mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Coppersmith, S. Winograd, "Matrix multiplication via arithmetic progression", Proc. of the 19th STOC (1987) 1–6

    Google Scholar 

  2. S. Even: "Graph algorithms", Comp. Sc. Press 1979

    Google Scholar 

  3. H. Enomoto, A. Saito: "Disjoint shortest paths in graphs", Combinatorica 4 (1984) 275–279

    Google Scholar 

  4. R.C. Entringer, D.E. Jackson, P.J. Slater: "Geodetic connectivity of graphs", IEEE Trans. on Circuits and Systems 24 (1977) 460–463

    Google Scholar 

  5. T. Hirata, K. Kubota, O. Saito: "A sufficient condition for a graph to be weakly k-linked", J. Combin. Th. 36B (1984) 85–94

    Google Scholar 

  6. A. LaPaugh, R.L. Rivest: "The subgraph homeomorphism problem", Proc. of the 10th STOC (1978) 40–50

    Google Scholar 

  7. L. Lovasz, V. Neumann-Lara, M. Plummer: "Mengerian theorems for paths of bounded length", Period. Math. Hung. 9 (1978) 269–276

    Google Scholar 

  8. H. Okamura: "Multicommodity flows in graphs II", Japan J. Math. 10 (1984) 99–115

    Google Scholar 

  9. D. Peleg, E. Upfal: "Constructing disjoint paths on expander graphs", Report RJ 5568 (56687), IBM Almaden Research 1987

    Google Scholar 

  10. N. Robertson, P.D. Seymour: "Graph minors XIII. The disjoint paths problem", to appear

    Google Scholar 

  11. C. Thomassen: "2-linked graphs", Europ. J. Combin. 1 (1980) 371–378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. Monien R. Cori

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwill, A. (1989). Shortest edge-disjoint paths in graphs. In: Monien, B., Cori, R. (eds) STACS 89. STACS 1989. Lecture Notes in Computer Science, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029011

Download citation

  • DOI: https://doi.org/10.1007/BFb0029011

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50840-3

  • Online ISBN: 978-3-540-46098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics