Abstract
Recently the entropy-similarity measure has been introduced for the registration of image pairs prior to subtraction in medical imaging e.g. digital subtraction angiography (DSA). The registration is based on motion-vector fields estimated with a template-matching techniques. The entropy is calculated via weighted grey-value histograms of the difference-image template and measures the degree of histogram dispersion in case of misregistration. In this paper, a generalization of the underlying concept is presented. We prove that any strictly convex function can be used as histogram-weighting function leading to a suitable similarity measure. The quality of the histogram-based measures is compared to other frequently used similarity measures. As a result the energy-similarity measure turns out to be the most suitable measure for template matching. The success of the registration will be demonstrated with a geometrically distorted pair of images taken of the abdomen.
Preview
Unable to display preview. Download preview PDF.
References
T. M. Buzug and J. Weese, Improving DSA images with an automatic algorithm based on template matching and an entropy measure, Proc. of the CAR'96, H. U. Lemke, M. W. Vannier, K. Inamura and A. G. Farman (Eds.), (Elsevier, Amsterdam, 1996) p. 145.
T. M. Buzug, J. Weese, C. Fassnacht and C. Lorenz, Using an entropy similarity measure to enhance the quality of DSA images with an algorithm based on template matching, in: Proc. of the 4th Int. Conf. on VBC'96, Lecture Notes in Computer Science 1131 (Springer, Berlin, 1996) p. 235.
T. M. Buzug and J. Weese, Similarity measures for subtraction methods in medical imaging, in: Proc. of the 18th Ann. Int. Conf. of the IEEE EMBS'96 (Amsterdam, 1996) p. 140.
H. Haken, Synergetics, (Springer, Berlin, 1983).
C. E. Shannon, A mathematical theory of communication, Bell Sys. Tech. Journal XXVII (1948) 379.
P. Kosmol, Optimierung und Approximation (de Gruyter, Berlin, 1991).
R. Yoshida, T. Miyazawa and A. Doi and T. Otsuki, Clinical Planning Support System — CliPSS, IEEE Computer Graphics and Applications (1993) 76.
W. K. Pratt, Correlation techniques of image registration, IEEE Trans. on AES, AES-10 (1974) 353.
A. Rosenfeld and A. Kak, Digital picture processing, 2nd ed. (Academic Press, New York, 1982).
J. M. Fitzpatrick, D. R. Pickens, H. Chang, Y. Ge and M. Özkan, Geometrical transformations of density images, SPIE 1137 (1989) 12.
E. O. Schulz-DuBois and I. Rehberg, Structure function in lieu of correlation function, Appl. Phys. 24 (1981) 323.
A. Venot and V. Leclerc, Automated correction of patient motion and gray values prior to subtraction in digitized angiography, IEEE Trans. on Med. Im. 4 (1984) 179.
K. J. Zuiderveld, B. M. ter Haar Romeny and Max. A. Viergever, Fast rubber sheet masking for digital subtraction angiography, SPIE 1137 Science and Engineering of Medical Imaging (1989) 22.
A. Collignon, D. Vandermeulen, P. Suetens and G. Marchal, 3D multimodality medical image registration using feature space clustering, Proc. of the 1st Int. Conf. CVRMed'95, N. Ayache (ed.), Lecture Notes in Computer Science 905 (Springer, Berlin, 1995) p. 195.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buzug, T.M., Weese, J., Fassnacht, C., Lorenz, C. (1997). Image registration: Convex weighting functions for histogram-based similarity measures. In: Troccaz, J., Grimson, E., Mösges, R. (eds) CVRMed-MRCAS'97. CVRMed MRCAS 1997 1997. Lecture Notes in Computer Science, vol 1205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029239
Download citation
DOI: https://doi.org/10.1007/BFb0029239
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62734-0
Online ISBN: 978-3-540-68499-2
eBook Packages: Springer Book Archive