Abstract
We used Machine Learning (ML) methods to learn the best decision rules to distinguish normal brain aging from the earliest stages of dementia using subsamples of 198 normal and 244 cognitively impaired or very mildly demented (Clinical Dementia Rating Scale=0.5) persons. Subjects were represented by their age, education and gender, plus their responses on the Functional Activities Questionnaire (FAQ), the Mini-Mental Status Exam (MMSE), and the Ishihara Color Plate (ICP) tasks. The ML algorithms applied to these data contained within the electronic patient records of a medical relational database, learned rule sets that were as good as or better than any rules derived from either the literature or from domain specific knowledge provided by expert clinicians. All ML algorithms for all runs found that a single question from the FAQ, the forgetting rule, (“Do you require assistance remembering appointments, family occasions, holidays, or taking medications?”) was the only attribute included in all rule sets. CART's tree simplification procedure always found that just the forgetting rule gave the best pruned decision tree rule set with classification accuracy (93% sensitivity and 80% specificity) as high as or better than any other decision tree rule-set. Comparison with published classification accuracies for the FAQ and MMSE revealed that including some of the additional attributes in these tests actually worsen classification accuracy. Stepwise logistic regression using the FAQ attributes to classify dementia status confirmed that the forgetting rule gave a much larger odds ratio than any other attribute and was the only attribute included in all of the stepwise logistic regressions performed on 33 random samples of the data. Stepwise logistic regression using the MMSE attributes identified two attributes which occurred in all 33 runs and had by far the highest odds ratio. In summary, ML methods have discovered that the simplest and most sensitive screening test for the earliest clinical stages of dementia consists of a single question, the forgetting rule.
Preview
Unable to display preview. Download preview PDF.
References
American Psychiatric Association, Washington, D. C. Diagnostic and Statistical Manual of Mental Disorders, 4 edition, 1994.
Ohmann C, Yang Q, Moustakis V, Lang K, and PJ van Elk. Machine learning techniques applied to the diagnosis of acute abdominal pain. In Pedro Barahona and Mario Stefanelli, editors, Lecture Notes in Artificial Intelligence: Artificial Intelligence in Medicine AIME95, volume 934, pages 276–281. Springer, 1995.
Cestnik G, Konenenko I, and Bratko I. Assistant-86: A knowledge-elicitation tool for sophisticated users. In Bratko I and Lavrac N, editors, Progress in Machine Learning, pages 31–45. Sigma Press, 1987.
Crum R.M, Anthony J.C, Bassett S.S, and Folstein M.F., Population-based norms for the mini-mental state examination by age and educational level. JAMA, 269(18):2386–2390, May 1993.
Heckerman D.E, Horvitz E.J, and Nathwani B.N., Towards normative expert systems: Part i the pathfinder project. Methods of Information in Medicine, (31):90–105, 1992.
Duda R.O and Hart P.E. Pattern Classification and Scene Analysis. John Wiley, New York, 1973.
Ernst R.L and Hay J.W., The u.s. economic and social costs of alzheimer's disease revisited. American Journal of Public Health, 84(8):1261–4, Aug 1994.
Fillenbaum G.G, Heyman A, Wilkinson W.E, and Haynes C.S., Comparison of two screening tests in alzheimer's disease—the correlation and reliability of the mini-mental state examination and the modified blessed test. Archives of Neurology, 44(9):924–7, Sep 1987.
Folstein M.F, Folstein S.E, and McHugh P.R., Mini-mental state-a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3):189–98, Nov 1975.
Hoffman R.S., Diagnostic errors in the evaluation of behavioral disorders. JAMA, 248:225–8, 1982.
Shinobu Ishihara. Ishihara Tests for Colour-Blindness. Kanehara Shuppan, Ltd., Tokyo Japan, 1994.
Wyatt J. Lessons learned from the field trials of acorn, a chest pain advisor. In Barber B, Cao D, Qin D, and Wagner F, editors, Proceedings MedInfo, pages 111–115. Elsevier Scientific, 1989.
Brieman L., Friedman J.H., Olshen R.A., and Stone C.J. Classification and Regression Trees. Wadsworth, Belmont, 1984.
Gierl L. and Stengel-Rutkowski S., Integrating consultation and semi-automatic knowledge acquisition in a prototype-based architecture: Experiences with dysmorphic syndromes. Artificial Intelligence in Medicine, 6:29–49, 1994.
Nada Lavrac and Igor Mozetic. Second generation knowledge acquisition methods and their application to medicine. In Keravnou E, editor, Deep Models for Medical Knowledge Engineering, pages 177–198. Elsevier, New York, 1992.
Lubeck D.P, Mazonson T and Bowe P.D., Potential effect of tacrine on expenditures for alzheimer's disease. Medical Interface, 7(10):130–8, Oct 1994.
McCleary R, Shankle W.R, Mulnard R.A, and Dick M.B. Ishihara test performance and dementia. Journal of the Neurological Sciences, in press 1996.
R.S. Michalski, Mozetic I, Hong J, and Lavrac N. The multi-purpose incremental learning system aq15 and its testing application to three medical domains. In In Proceedings of the Fifth National Conference on Artificial Intelligence, pages 1041–1045, Philadelphia, PA, 1986. Morgan Kaufmann.
Morris J.C., The clinical dementia rating (cdr): current version and scoring rules. Neurology, 43(11):2412–4, Nov 1993.
Igor Mozetic and Bernhard Pfahringer. Improving diagnostic efficiency in kardio: Abstractions, constraint propagation and model compilation. In Keravnou E, editor, Deep Models for Medical Knowledge Engineering, pages 1–25. Elsevier, New York, 1992.
O'Connor D.W, Fertig A, Grande M.J, Hyde J.B, Perry J.R, Roland M.O, Silverman J.D and Wright S.K. Dementia in general practice: the practical consequences of a more positive approach to diagnosis. Br J Gen Pract, 43:185–8, 1993.
Oconnor D.W, Pollitt PA, Treasure F.P, Brook C.P.B, and Reiss B.B. The influence of education, social class and sex on mini-mental state scores. Psychological Medicine, 19:771–776, 1989.
Michael Pazzani and Dennis Kibler. The utility of knowledge in inductive learning. Machine Learning, (9):57–94, 1992.
Pfeffer R.I, Kurosaki T.T, Harrah C.H, Chance J.M, and Filos S. Measurement of functional activities in older adults in the community. J Gerontology, 37:323–9, 1982.
Quinlan J.R. C4.5: Programs for Machine Learning. Morgan Kaufmann, Los Altos, California, 1993.
Kohavi R, George John, Richard Long, David Manley, and Karl Pfleger. Mlc++: A machine learning library in c++. In Tools with Artificial Intelligence, pages 740–743. IEEE Computer Society Press, 1994.
Shankle W.R, Datta P, Dillencourt M, and Pazzani M. Improving dementia screening tests with machine learning methods. Alzheimer's Research, 2(3), Jun 1996.
Shortliffe E. Computer-Based Medical Consultations: MYCIN. Elsevier/North Holland, New York, 1976.
Welsh K.A, Butters N, Mohs R.C, Beekly D, Edland S, and Fillenbaum G. The consortium to establish a registry for alzheimer's disease (cerad. part v. a normative study of the neuropsychological battery. Neurology, 44(4):609–14, Apr 1994.
Williams T.F and Costa P.T. Recognition and initial assessment of alzheimer's disease and related dementias: Clinical practice guidelines. Technical report, Department of Health and Human Services, 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shankle, W.R., Mani, S., Pazzani, M.J., Smyth, P. (1997). Detecting very early stages of dementia from normal aging with Machine Learning methods. In: Keravnou, E., Garbay, C., Baud, R., Wyatt, J. (eds) Artificial Intelligence in Medicine. AIME 1997. Lecture Notes in Computer Science, vol 1211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029438
Download citation
DOI: https://doi.org/10.1007/BFb0029438
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62709-8
Online ISBN: 978-3-540-68448-0
eBook Packages: Springer Book Archive