Abstract
Deterministic and nondeterministic one-way multicounter machines with bounds on the number of zerotests are studied. First, we establish a fine hierarchy of zerotesting bounded deterministic counter machine languages. Second, we show that a nondeterministic two-counter machine with 2 zerotests is able to recognize a language which cannot be accepted by any deterministic sublinear zerotesting bounded multicounter machine.
Preview
Unable to display preview. Download preview PDF.
References
T. Chan, Reversal complexity of counter machines, Proc. 13th ACM STOC (1981) 146–157.
T. Chan, Pushdown automata with reversal-bounded counters, Journal of Computers and Systems Sciences 37 (1988) 269–291.
P. Ďuriš and Z. Galil, On reversal-bounded counter machines and on pushdown automata with a bound on the size of the pushdown store, Inform. and Control 54 (1982) 217–227.
P. Ďuriš and Z. Galil, Folling a two-way automata or one pushdown store is better than one counter for two-way machines, Theoret. Comput. Sci. 21 (1982) 39–53.
P. Ďuriš and J. Hromkovič, Zerotesting bounded one way multicounter machines, Kybernetika 23 (1978) 13–18.
S.A. Greibach, Remarks on blind and partially blind one-way multicounter machines Theoret. Comput. Sci. 7 (1978) 311–324.
J. Hromkovič, Hierachy of reversal and zerotesting bounded multicounter machines, Proc. 11th MFCS 84 LNCS 176 (1984) 312–321.
J. Hromkovič, Reversal-bounded nondeterministic multi-counter machines and complmentation, Theor. Comput. Sci.51 (1987) 325–330.
O.H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J.ACM 25 (1978) 116–133.
M. Jantzen, On zero-testing bounded multicounter machines Proc. 4th GI Conference 158–169.
M. Jantzen, On the hierarchy of Petri Net Languages, RAIRO Informatique Theoretique 13 (1979) 19–30.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1990 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
ČernĀ, I. (1990). Some properties of zerotesting bounded one-way multicounter machines. In: Rovan, B. (eds) Mathematical Foundations of Computer Science 1990. MFCS 1990. Lecture Notes in Computer Science, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029608
Download citation
DOI: https://doi.org/10.1007/BFb0029608
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-52953-8
Online ISBN: 978-3-540-47185-1
eBook Packages: Springer Book Archive