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Abstract 

The distinction between computing answers and checking answers is fundamental to compu­

tational complexity theory, and is reflected in the relationship of NP to P. The plausibility 

of computing the answers to many membership queries to a hard set with few queries is 

the subject of the theory of terseness. In this paper, we develop companion theories-both 

complexity-theoretic and recursion-theoretic-of characteristic vector terseness, which ask 

whether the answers to many membership queries to a hard set can be checked with fewer 

queries. 





1 Introduction 

The distinction between checking and evaluating is fundamental in computational com­

plexity theory. In its most popular version it emerges as the P = NP question, but it 

also reappears in other problems of the field [Val76,HIS85]. We introduce this distinction 

between checking and evaluating to the theory of terseness. 

The theory of terseness studies whether it is possible to compute the answers to mul­

tiple queries to an oracle by fewer queries. Pioneering work in this area was done by 

Barzdin' [Bar68]-and, more recently, by Beigel, Gasarch, Gill, and Owings [BGG087]­

for a recursion-theoretic context, and by Amir, Beigel, and Gasarch [Bei87,AG88] for a 

polynomial-time framework. Their approach to certain structural properties of hard sets 

studies the complexity of evaluating the values of queries-that is, of computing the answers 

to the queries. 

In this paper we develop a theory of characteristic vector terseness, the 'checking' coun­

terpart of the theory of terseness: Given a vector of queries to an oracle and answers for 

them, we want to know if all the answers are correct. That is, we wish to determine whether 

the vector of answers is the characteristic vector of the queries relative to the considered 

language. The minimal number of queries that suffice for this purpose is called the charac­

teristic vector cost of the language considered. 

In Section 2, we study the problem for nonrecursive sets. In this context the appropriate 

question for characteristic vector cost is: What is the minimum number j such that the 

answers to n queries to A can be checked with j queries to A? We show that from a result 

of [Rog67] it follows that the characteristic vector cost of K is exactly two. This strengthens 

the result of ([BGG087], see also [Bar68]) that computing the solutions to two queries to 

K requires two queries to K. Other results on the characteristic vector cost of nonrecursive 

languages are also proven. 

In the resource-bounded world of feasible computations, Section 3 studies the analogous 

question for polynomial-time oracle machines, and finds that the characteristic vector cost 

of a language is closely related to its basic set-theoretic properties. In this context we permit 

the use of any oracle that belongs to the same class as the language we are interested in. 

Our results show a connection between characteristic vector costs and Boolean hierarchies 

[Hau14,Wec85,CGH+88]. For reasonably well-behaved classes C, the characteristic vectors 

of C can be checked with one query if and only if the Boolean hierarchy over C collapses 

in a certain way. 
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We next consider the characteristic vector cost of NP. If characteristic vectors of NP 

languages are recognizable uniformly (that is, via a single polynomial-time oracle machine) 

with one query to a language of the same class, then we can derive a strong conclusion: 

all languages polynomial-time truth-table reducible to a language L of the considered class 

are in fact l-truth-table reducible to L. Finally, we investigate some specific classes within 

the Boolean hierarchy over NP and show how their characteristic vector costs relate to the 

existence of a proper Boolean hierarchy over NP. 

Before presenting our results, let us introduce some notation. (.,., ... ,.) applied to 

k arguments (k ~ 2) denotes the polynomial-time computable k-ary pairing function from 

N k --+ N used in [Rog67]. We will make use ofthis functions for strings as well by identifying 

i E N with bin( i), which stands for the i-th binary string in lexicographical order. For any 

language A ~ ~ .. , we denote by A its complement and by Ak the set {(XI, ... ,Xk)lxi E 

A for 1 ~ i ~ k}. For sets Ai ~ ~ .. the k-fold disjoint union Al EB A2 EB ... Ak is defined by 

Uf=l {(bin(i),x)1 x E Ai}. 

P (NP) denotes the class of languages that can be accepted by deterministic (nonde­

terministic) polynomial-time Turing machines [HU79]. pC and Npc refer to the analogous 

classes relative to an oracle from the class C [BGS75]. If during such a computation only 

a limited number of oracles queries is permitted (say k) we indicate that by the additional 

superscript [k], for example, pNP[k] [PZ83]. In general, the classes dealt with are either 

well-known or will be defined explicitly as needed. 

A language L is said to be k-pterse [AG88] if a polynomial-time oracle machine cannot 

in general compute the correct answers to an input set of k queries with less than k queries 

to the oracle L. If L is k-pterse for each k ~ 2 then it is pterse [AG88]. 

We now propose and study a "checking answers" analog of the [AG88,Bar68,BGG087] 

theory of terseness. 

Recursion-Theoretic Results on Characteristic Vectors 

We study the number of queries required to verify whether a given string is a charac­

teristic vector of a nonrecursive set. 

Definition 2.1 If A ~ ~ .. and Xl, .. . , Xi E ~.. then let 

FiA(XI,,,,,Xi) = (xA(xd"",XA(Xi)), 

ViA = {(XI, ... ,Xj,bl, ... ,bi) I (Vj)[XA(Xj) = bj]}, 
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and 
00 

V: = U{(i,v) I v E V/}. 
i=l 

where XA is the characteristic function of A. 

Definition 2.2 [BGG087] Let i E N and let A be a set. Then Q(i,A) (QII(i,A)) is the 

collection of all sets B such that B ST A and this Turing-reduction can be performed by a 

machine that makes at most i serial (parallel, i.e., truth-table) queries to A. 

The following notion is new to this paper. 

Definition 2.3 A set A is vterse if for all i ~ 1, V/ ~ Q(i - 1, A). 

We are interested in how many queries to A are required to decide the set ViA (and V:). 

Naively it appears that for sets A that are nonrecursive, i queries might be required. 

We first examine r.e. sets. How many queries are required to compute ViA if queries to 

an r.e. set other than A are allowed? 

Theorem 2.4 If A is r.e. and i EN, then ViA E QII(2,K). 

Proof: Given (Xl"",Xi,b1, ... ,bi) create machines MY1 and MY2 such that MY1 enu­

merates A and stops only if all the elements of {Xj Ibj = I} appear, and MY2 enumer­

ates A and stops only if some element of {Xj I bj = O} appears. It is easy to see that 

(XI, . . . , Xi, bI,"" bi) E ViA if and only if (Yl E K) 1\ (Y2 ~ K). I 
The above proof in fact shows that ViA is 2-r.e. (see [EHK81] for a definition of 2-r.e.). 

Theorem 2.4 is optimal for A = K in that the set V2K requires two queries to K. The 

following proof of Theorem 2.5, pointed out to us by Richard Chang, is more direct than 

that found in earlier versions of this paper. 

Theorem 2.5 vl <t Q(l, K). 

Proof: It is known (see [Rog67]) that the m-degree of K X K contains the m-degree of 

K ~ K properly. By the fact that K X K many-one reduces to V2K , it follows that every 

language in the m-degree of K X K many-one reduces to V2K . Since every language in 

Q(l, K) many-one reduces to K ~ K it follows that V2K ~ Q(l, K). 

I 
We exhibit some sets that are vterse. 
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Theorem 2.6 If A is l-generic (see [Joc79]) then A is vterse. 

Proof: In [BGG087] it is shown that if A is l-generic then for all i Ai+l ¢ Q( i, A); hence 

for all i it holds that ViiI ¢ Q(i,A). I 
Jockusch [Joc79] showed that the class of I-generic sets is comeager. Hence: 

Corollary 2.7 The class of vterse sets is comeager. 

The following theorem shows that not all sets are vterse. 

Theorem 2.8 Every truth-table degree (see [Rog67]) contains a set A such that V: E 

Q(I, A). 

Proof: Let D be any set. We construct A =tt D such that V: E Q(I, A). Let Ao = D. 

For i 2: 0 let Ai+l = {(Xl, bl, u, ... , xz , bz , i., z, i + 1) I z 2: 1 and (V'k)[1 :S k :S z => 

[(0 :S i» :S i) and (F:Jk (Xk) = bk)]]. Set A = Ui::l Ai. It is easy to set that A =tt D and 

that 

where q is one greater than the maximum value of the last component of any Xi (since 

we are adopting the recursively defined pairing functions of Rogers, this can be written 

q = l+ maXI$k$dqk I Xk = (rk' qk)}). I 
We now examine vterseness for r.e. sets. 

Theorem 2.9 Every r.e. Turing degree contains r.e. sets A and B such that V A E QII(2, A)w 

and B is vterse. 

Proof: Every r.e. Turing degree contains an r.e. set that is semirecursive, i.e., a lower cut 

of a recursive linear ordering [Joc68]. Let A be that set, and let < denote the recursive 

linear ordering. We show that V: E QII(2, A). 

Given (Xl,"., Xi, bl, ... , bi), rename the arguments such that Xl < X2 < ... < Xi, and 

rename the bi's via the same permutation. If there is an i such that bi = 0 and bi+l = 1, 

then the given characteristic vector is not in V:. If no such i exists, then there exists a j 

such that i; = b2 = ... = bj = 1 and bj+l = ... = bi = O. It is easy to see that the given 

characteristic vector is in V: if and only if (Xj E A) 1\ (Xj+l ¢ A). 

In [BGG087] it was shown that every r.e. Turing degree contains an r.e. set B such 

that for all i the set PARITYi~1 = {(Xl,,,,,Xi+I): IB n {Xl, ... ,xi+dl is even} is not in 
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Q(i, B). A careful examination of the proof reveals that B is not in Q(i, B). Hence for 

all i, Vi~l ¢ Q(i, B), so B is vterse. I 
By way of contrast, it follows easily from Theorem 2.5 that some m-degrees--e.g., that 

of the r.e. complete sets-contain no sets A for which V! E Q(1, A). Though it follows 

from Theorem 2.8 that every r.e. Turing degree contains a set A such that V! E Q(1, A), it 

remains an open question whether every r.e. Turing degree contains a recursively enumerable 

set A such that V: E Q(1, A). 

3	 Characteristic Vector Complexity and Boolean Hierar­

chies 

To what extent do the results of the last section hold in a resource-bounded frame­

work? The last section's questions about characteristic vector complexity become, in a 

time-bounded world: Given a vector of queries and a vector of purported answers to the 

queries, how many queries does a polynomial-time oracle machine need to check whether 

all the answers are correct? We are primarily interested in classes that lie above P and are 

reasonably well-behaved. 

Definition 3.1 We call a class C interesting if: 

1. P	 ~ C, 

2. C is closed under disjoint union, i.e., if L1, .. , Lk E C then L1 EB L2 EB ... EB Lk E C, 

3. C is closed under trivial pairing, Le., for any language LEe the sets 

{(x,	 y) Ix E L, y E ~*} and {(x, y) Ix E ~*, Y E L} are in C, and 

4. C is closed downwards under $~ reductions, i.e., L' E C and L $~ L' implies LEe. 

Furthermore, we are interested mainly in the use of oracles of approximately the same power 

as the considered language. Hence we will define characteristic vector cost for classes, rather 

than for sets. 

Definition 3.2 Let C be any class of sets. 

1. The characteristic vector cost of a class Cis: 

CVc(k) = ~~{ i: for allL E c, vl E pC[i]}. 
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2. eVe!(k) = rp~l]-{ i: for all LEe, Lk E pC[i]}. 

3.	 eVc(k) = rp~l]-{ i: for all LEe, L k E pC[i]}. 

4.	 evc = rp~l]-{ i: for all LEe, V! E pC[i] }. 

We observe that the behavior of a class under basic set-theoretic operations is closely 

related to its characteristic vector cost. 

Proposition 3.3 Let e be an interesting class other than P. If e is closed under: 

1.	 union (intersection) then for all k: eVc(k) = 1 (eVe!(k) = 1). 

2. complement then for all k: eVe!(k) = eVc(k) = eVc(k). 

3. union	 and complement (equivalently, intersection and complement) then for all k: 

eVc(k) = 1 . 

4. union and intersection then for all k: eVc(k) ~ 2. 

Proof: 

1. By the assumption that e is different from P, we know that eVe! (k) and eVe(k) are 

greater than 0 if k ~ 1. Let L be a language in e. Since e is closed under trivial pairing 

the sets, L' = {(x, y) Ix E L, y E E"} and L" = {(x, y) Ix E E", y E L} are in e. By the 

assumption that e is closed under union the set L' UL" = {(x, y) Ix E L or y E L} belongs 

to e. On an input (x, y) an oracle machine can check with one query to this oracle if both 

x and y do not belong to L. This is easily seen to work for arbitrary k. For intersection the 

proof is analogous. 

2. It suffices to show that eVc(k) ~ eVJ(k). Let LEe, e closed under complement. 

Clearly V! ~~ (L EB L)k E pC[Cvet(k)]. Thus eVc(k) ~ eVe!(k). 

3.	 and 4. are immediate by 1. and 2. I 
The proposition indicates that the characteristic vector costs of a class reflect its closure 

properties under the corresponding operations. 

Definition 3.4 We will call an interesting class C: 

1.	 pseudo-closed under intersection if for all k ~ 1 : evJ(k) = 1, 

2.	 pseudo-closed under union if for all k ~ 1 : eVc(k) = 1, and 

6 



3. pseudo-closed under complement if for all k ~ 1 : CVJ(k) = CVc(k) = CVc(k). 

Definition 3.5 A class C has wee characteristic vector cost if, for all k ~ 1, CVc(k) = 1. 

A justification of these names is given by Theorem 3.9, which shows that pseudo-closure 

and closure under corresponding set-theoretic operations are closely related. For example, 

it holds that classes that are pseudo-closed under union and complement have no infinite 

Boolean hierarchies. 

From Proposition 3.3 it follows that among the classes with wee characteristic vector 

cost are all interesting deterministic classes that are defined by time or space bounds, 

parity polynomial time (ffiP, defined in [PZ83,GP86]), ZPP [Giln], the ~t-classes of the 

polynomial time hierarchy, and so on, because all of them are closed under complement and 

union. 

Also by Proposition 3.3 the characteristic vector cost is not higher than two for classes 

such as NP, the ~t and II~ levels of the polynomial time hierarchy [Ston], and FewP 

([All86,AR88], see also [Rub88,CH]), since they are closed under union and intersection. 

Among the classes for which the number of queries can not be reduced straightforwardly 

are US (which tests for unique solutions, [BG82], see also [GW87]) and the classes of the 

Boolean hierarchy over NP [Wec85,CGH+88,CGH+89]. Their vector checking cost will be 

studied in Theorem 3.14 and its corollaries. 

We now turn to Boolean hierarchies over complexity classes. Among them, the Boolean 

hierarchy over NP has received the most attention. However, Boolean hierarchies can be 

defined over arbitrary classes [Hau14,Wag88,HH88,BBJ+]. 

Definition 3.6 [Hau14] For a class C, the Boolean hierarchy over C is the collection of 

classes defined by: 

BHc(l) = C. 

BHc(k) = {L 1 - L21L1 E C, L2 E BHc(k-1)} for k > 1. 

BHc = Uk BHc(k). 

We use the the following observation. 

Proposition 3.7 ([BBJ+ ,Bei88a]) Let C be any class of sets. For all k ~ 1 : pC[k] ~ BHc. 

We observe that if there exists any k > 1 such that one can recognize characteristic 

vectors of length k with one query then one can do the same for every length. 
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Proposition 3.8 Let e be an interesting class. If there is a k > 1 with eVe(k) = 1, then 

for all i ~ 1 it holds that eVe( i) = 1. 

Proof: Suppose eVc(j) = 1. Let M be the machine that checks characteristic vectors 

of length j for a language LEe with one query to an oracle L' E e. Now vectors 

(Xl, ••• , Xj+l, bl , ••• , bj+d of L can be checked the following way: Run M on the vector v 

= (x I, ... , X j, bl , .•• , bj ) pursuing both ou tcoming paths of the query but withoutactually 

asking the query to the oracle. If both outcomes of the query q(v) are different (otherwise 

the case is trivial), we know that v is a characteristic vector if and only if M accepts on 

the 'yes' path and q(v) E L' or M accepts on the 'no' path and q(v) rt L'. Since e is closed 

under disjoint union there is a machine M' checking vectors of L EEl L' with one query to a 

language L" E e. We run M' on (1q(v), OXj+l, 1, bj+l) if M accepts von the 'yes' path, 

and on (1q(v), OXj+ll 0, bj+l) if it accepts v on the 'no' path. Thus one query to L" suffices 

to check vectors of length j +1, and the claim follows. I 
The following theorem explores the consequences for these Boolean hierarchies of the 

pseudo-closures of their basic classes. 

Theorem 3.9 Let e be an interesting class that contains P properly: 

There is a k > 1 with eVe(k) = 1 if and only if BHc = pC[I]. 

Proof: 
LIf BHc = pC[I] then by Proposition 3.7 we get Vk E pC[ll, which means that we can check 

characteristic vectors of length k with one query to a language in e. 
Now assume the left-hand side of the equivalence holds. 

, 2': holds independently of the assumption by Proposition 3.7. 

, ~': Fix S E BHc. We will show that S E pC[ll, By definition there is a k such that S 

= Sl - (S2 - (... Sk-l - Sk)" .), with S, E e for all i ~ k. This gives rise to a Boolean 

formula with 

where SiC X) stands for X E Si. The conjunctive normal form of this formula is of the form 

ell /\ el2 /\ ••• /\ elj , where j and the number of literals in each clause eli are constant, i.e., 

they depend only on S but not on the individual input string x. Thus it is clear that there 

is a machine that evaluates each clause eli = (SiJx), ... , Si.(x), ""Si.+ 1 (x), ... , ""Sir (x)) 

with one query to a e language: Since e is interesting Sl EEl· .. EEl Sk E e and by Proposition 
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3.8 there is machine M that checks Sl EEl· .. EEl Sk-vectors of the maximal length of all clauses 

eli with one query to a language L' E C. We run M on the vector Vi = ((bin(i l ), Sil (x )), 

... , (bin( ir ) , Si ( x)), 0, ... ,0,1, ... , 1) with °repeated s times and 1 repeated r - s times­r 

exploiting the fact that Vi is a characteristic vector of Sl EEl ... EEl Sk if and only if the value 

of the clause eli is false. 

Without loss of generality we can assume that for any vector Vi this machine queries 

q(Vi), accepts on one outcome of the query, and rejects on the other one. Thus the value of 

eli is true if and only if either M accepts on the 'yes' path and q(vd E L', or M accepts on 

the 'no' path and q(Vi) ~ L'. In polynomial-time we can precompute which queries Masks 

for the different clauses, and which of the 'yes' or on the 'no' paths it accepts on. 

This gives rise to the following procedure: 

On input x with F(x) = ell /\ el2 /\ .•. /\ elj being the corresponding CNF formula (which 

is fixed for each S). 

•	 For each clause eli compute the vector Vi and the query q(Vi) the machine M asks. If 

M accepts Vi on the 'yes' path then b, := 0 else bi := 1. 

By assumption the last part is possible by running a polynomial-time oracle machine, with 

an oracle L E C that is queried only once. From the construction it follows that xES 

if and only if F( x) ell /\ el2 /\ ••• /\ elj is true if and only if for all i ~ j it holds that 

Xdq(Vi)) = b.. 

I 
It follows that for classes with wee characteristic vector cost it is possible for determin­

istic oracle machines to query the oracle only once, instead of a constant number of times, 

without loss of power. 

Corollary 3.10 Let C be an interesting class. 

1.	 There is a k > 1 with CVe(k) = 1 if and only if pC[i] = pC[l] for all i 2: 1. 

2.	 There is a k > 1 with CVe(k) = 1 if and only if every language that is polynomial-time 

truth-table reducible to a set in C is indeed polynomial-time one-truth-table reducible 

to a set in C. 

By a result of Papadimitriou and Zachos ([PZ83], see also [KSW87,AG88]), for each 

i, pNP[i] is contained in the Boolean hierarchy. This also holds for arbitrary interesting 
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classes (Proposition 3.7), and the same applies for bounded-truth-table degrees of interesting 

classes. Thus Corollary 3.10 follows from Theorem 3.9. 

Corollary 3.10 contrasts with a result of Chang and Kadin ([CK89], correcting [Kad88]) 

and Beigel [Bei88b]: They gave a criterion that is equivalent to the collapse of the Boolean 

hierarchy of a class to its closure under polynomial many-one reductions. For C = NP, 

Corollary 3.13 will provide a criterion that is equivalent to the coincidence of the closure 

of NP under polynomial-time truth-table reductions with its closure under one-truth-table 

reductions. 

Theorem 3.9 immediately yields many results about well-known interesting complexity 

classes (in the technical sense defined previously). We will illustrate and extend them in 

the case of NP and some classes that are in its Boolean hierarchy. The Boolean hierarchy 

over NP arose from the study of sets that are the difference of two NP languages [PZ83, 

PY84], and has been investigated in detail by [Wec85], [CGH+88], and [CGH+89]. For NP 

itself we obtain Corollary 3.11, which follows from the fact the NP is closed under union 

and intersection Theorem 3.9, and the result of Chang and Kadin result that a collapse of 

the Boolean hierarchy implies one of the polynomial-time hierarchy [CK89]. 

Corollary 3.11 

1.	 For all k ~ 1, CVNP(k) ~ 2. 

2.	 There is a k > 1 such that CVNP(k) = 1 if and only if BHNP = pNP[l]. 

3.	 If there is a k > 1 such that CVNP(k) = 1, then the polynomial-time hierarchy 

collapses. 

Up to here we studied the consequences of being able to recognize characteristic vectors 

of a fixed constant length with one query to an oracle of the same class. The following 

theorem explores the consequences of the stronger assumption that characteristic vectors of 

variable length are uniformly checkable with one query. 

Theorem 3.12 CVNP = 1 if and only if pNP[log n] = pNP[l]. 

Proof: The idea of the proof (left to right, the other direction is immediate by the obser­

vation that V!AT E p SAT [21) is similar to that of Theorem 3.9: Run the machine M, which 

queries its oracle L E NP at most log n times, along every possible path arising from all 

answers that might be given by the oracle (without querying the oracle). Each accepting 
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path corresponds to a candidate for a characteristic vector of at most log n components. 

M accepts the input if and only if one of them is a characteristic vector. By assumption we 

can recognize these vectors with a machine M' with one query to a C language. 

Now we run M' on each of those vectors without querying the oracle. M' asks a query q 

for such a vector, and accepts it on the 'yes' path and rejects on the 'no' path or vice versa 

(otherwise the case is trivial). The vector is a characteristic vector if and only if q is in the 

oracle and the 'yes' path of M' accepts or q is not in the oracle if the 'no' path accepts. 

Thus by checking the outcomes of M' on the different input vectors we obtain a vector of 

new queries and new answers, knowing that M accepts if and only if at least one of the 

answers is correct. Thus it follows that M accepts if and only if the vector consisting of the 

same queries, and having exchanged 'yes' and 'no' answers is not a characteristic vector, 

which again by assumption we can check with one query. I 
The fact that the class of languages polynomial-time truth-table reducible to an NP 

language equals pNP(log n] [Hem89,Wag87] yields the following corollary, which is interesting 

when compared with Corollary 3.10, part 2. 

Corollary 3.13 CVNP = 1 if and only if all languages that are polynomial-time truth-table 

reducible to an NP language are indeed polynomial-time one-truth-table reducible to an NP 

language. 

Now let's turn our attention to some classes that are located within the Boolean hier­

archy over NP. Its levels are neither known nor believed to be closed under complement, 

intersection, or union. In fact, by a result of Chang and Kadin, [CK89], for any k ~ 3 the 

closure of BHNP(k) under one of those operations implies its collapse on the same level. 

What are the consequences if vectors of languages of some level there can be checked 

with one query? 

Theorem 3.14 For all k > 1 it holds that: 

3i> 1 CVBHNP(2" - 1) ( i ) = 1 =* 
BHNP = pNP[k] =* 

Vi ~ 1 CVBHNP(2,,) ( i ) = 1 

Proof: For the first part let L E BHNP(2k) and L = L1 - L2 with L1 E NP and L2 E 

BHNP(2k - 1). Furthermore let L be any BHNP(2k - I)-complete problem (in [CGH+88] 
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it was shown that such problems exist) and 11, h be the corresponding reductions from L 1 
and L 2 to it. Then x E L if and only if (11 (x), h(x), 1,0) is a characteristic vector of 1, 
which can be checked with one query to 1 itself, since 1 is complete in BHNP(2k-1). Using 

the result of [AG88] that BHNP(2k-1) ~ pNP[k] and thus pBHNP(2k
- l )[1] ~ pNP[k] it follows 

that BHNP(2k) ~ pNP[k]. Since BHNP(2k) 2 pNP[k] it follows that BHNP(2k) = pNP[k] and 

the Boolean hierarchy collapses to that class, since in that case BHNP(2k) is closed under 

complement. 

For the second implication let L E BHNP(2k). How many queries to a language L' E 

BHNP(2k) do we need to check i membership queries to L? Clearly, i queries to a BHNP(2k) 

language are sufficient. By the assumption that BHNP(2k) ~ pNP[k] it follows that ViL E 

pNP[i.k], which again by the assumption is equal to pNP[k] and BHNP(2k). Thus one query 

to a BHNP(2k)-language suffices. I 
We note that for almost all oracles, characteristic vectors of any class of the Boolean 

hierarchy cannot be checked with one query to an oracle of the same power. In particular, 

it follows that with respect to a random oracle the bound of part 1 of Corollary 3.11 is 

optimal. 

Corollary 3.15 With probability one relative to a random oracle A, 

This follows from the facts that the proof of Theorem 3.14 relativizes and the Boolean 

hierarchy over NP is infinite with respect to a random oracle [Cai89]. 

Another class located in the Boolean hierarchy over NP is US: A language belongs to 

US if it is accepted in polynomial time by a nondeterministic machine that, by definition, 

accepts if and only if it has exactly one accepting path [BG82,GW87]. US is known to be 

closed under intersection, but does not seem to be closed under union or complement. For 

this class Theorem 3.9 yields the following corollary: 

Corollary 3.16 

1.	 US is pseudo-closed under complement if and only if BHNP = pUS[I]. 

2.	 If US is pseudo-closed under complement then the polynomial-time hierarchy col­

lapses. 

To see why this is so, first note that BHNP = BHus, since US contains coNP [BG82], 

so BHNP ~ BHus, and thus, since US ~ BHNP(2) the two hierarchies are equal. Part 1 
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follows from this observation and the fact the US is closed under intersection. Part 2 is a 

consequence of the result of Chang and Kadin that a collapse of the Boolean hierarchy over 

NP implies a collapse of the polynomial-time hierarchy. 

Finally we observe that wee characteristic vector cost for a class within NP implies that 

it is low. Low classes, intuitively, are those sets carrying far less information than NP­

complete sets. In particular, a set L is in t;;;;3 if pNPNPL = pNpNP (i;;;;3 was first defined in 

[KS85] as a generalization of the work of [Sch83]). Following Schoning's seminal paper on 

the low hierarchy, a number of papers have explored and refined its structure [KS85,BBS86, 

K88], culminating in the essentially optimal placement of classes within the low hierarchy 

[AH89]. The following result shows that classes with wee characteristic vector cost are 

simple in the sense of lowness. 

-Theorem 3.17 All classes C ~ NP with wee characteristic vector cost are ZOW3. 

Proof: A sufficient condition for C to be Z;;;;3 is that for any L E C there is an L' E C 

such that {(x, y)lx E L 1\ Y ~ L} ~~ {(x, y)lx ~ L'v y E L'} [Cha89]. For L E C with wee 

characteristic vector cost it holds that {(x, y)lx E L 1\ Y ~ L} E pL'[l) for some L' E C. As 

in the proof of Theorem 3.9, one can easily show that pL'[l) ~ {(x, y)lx ~ L' V Y E L'}, and 

thus the condition is fulfilled. I 
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