Abstract
We present a genetic algorithm for solving the traveling salesman problem by genetic algorithms to optimality for traveling salesman problems with up to 442 cities. Mühlenbein et al. [MGK 88], [MK 89] have proposed a genetic algorithm for the traveling salesman problem, which generates very good but not optimal solutions for traveling salesman problems with 442 and 531 cities. We have improved this approach by improving all basic components of that genetic algorithm. For our experimental investigations we used the traveling salesman problems TSP (i) with i cities for i=137, 202, 229, 318, 431, 442, 666 which were solved to optimality in [CP 80], [GH 89].
We could solve medium sized traveling salesman problems with up to 229 cities in < 3 minutes average runtime on a SUN workstation. Furthermore we could solve traveling salesman problems with up to 442 cities optimally in an acceptable time limit (e.g. the average runtime on a SUN workstation for the TSP (431) is about 30 minutes). The greatest examined problem with 666 cities could be approximately solved by constructing a tour with length 0,04% over the optimum.
Preview
Unable to display preview. Download preview PDF.
5 References
H.Braun, Massiv parallele Algorithmen für kombinatorische Optimierungsprobleme und ihre Implementierung auf einem Parallelrechner, Dissertation an der Universität Karlsruhe, 1990
H. Crowder, M. Padberg, Solving large-scale symmetric travelling salesman problems to optimality, Management Science, Vol.26, No.5 1980, 495–509
L.Davies (Ed.), Applying adaptive algorithms to epistatic domains Proc. Int. Joint Conf. on Artificial Intelligence, 1985
L. Davies (Ed.), Genetic algorithms and simulated annealing Pitman London, Morgan Kaufmann Publishers, CA, 1987
D.E. Goldberg, Genetic algorithms in search, optimization and machine learning, Reading, MA: Addison Wesley, 1989
J.J. Grefenstette (Ed.), Proceedings of the second int. conf. on genetic algorithms, Cambridge, MA: Lawrence Erlbaum, 1987
M.Grötschel, O.Holland, Solution of large-scale symmetric traveling salesman problems, To appear: Math.Programming, 1989/90
E.L.Lawler, J.K.Lenstra, A.H.G.Rinooy Kan, D.B.Shmoys (ed.)The traveling salesman problem, John Wiley & Sons, 1985
H. Mühlenbein, M. Gorges-Schleuter, O. Krämer, Evolution algorithms in combinatorial optimization, Parallel Computing, Vol.7, 1988, 65–85
H.Mühlenbein, J.Kindermann, The dynamics of evolution and learning-towards genetic neural networks, Connection. in Perspective, Pfeiffer ed., 1989
I.M.Oliver, D.J.Smith, J.R.C.HollandA study of permutation crossover operators on the travelling salesman problem, Proc. of the 2. Int. Conf. on Genetic Algorithms, 1987, 224–230
I. Rechenberg, Evolutionsstrategie-Optimierung technischer Systeme nach Prinzipien der biologischen Information, Frommann Verlag, Stuttgart, 1973
H.P. Schwefel, Numerische Optimierung von Computermodellen mittels der Evolutionsstrategie, Birkhäuser, Basel, 1977
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Braun, H. (1991). On solving travelling salesman problems by genetic algorithms. In: Schwefel, HP., Männer, R. (eds) Parallel Problem Solving from Nature. PPSN 1990. Lecture Notes in Computer Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029743
Download citation
DOI: https://doi.org/10.1007/BFb0029743
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54148-6
Online ISBN: 978-3-540-70652-6
eBook Packages: Springer Book Archive