
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Coordination of distributed/parallel multiple-grid domain decomposition

C.T.H. Everaars and F. Arbab

Computer Science/Department of Interactive Systems

CS-R9627 1996

Report CS-R9627
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Coordination of Distributed�Parallel Multiple�grid Domain
Decomposition

C�T�H� Everaars and F� Arbab

ever�cwi�nl and farhad�cwi�nl

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

Abstract

A workable approach for the solution of many �numerical and non�numerical� problems is domain decompo�

sition� If a problem can be divided into a number of sub�problems that can be solved in a distributed�parallel

fashion� the overall performance can signi�cantly improve� In this paper� we discuss one of our experi�

ments using the new coordination languageMANIFOLD to solve an instance of the classical optimization

problem by domain decomposition� We demonstrate the applicability of MANIFOLD in expressing the

solutions to domain decomposition problems in a generic way and its utility in producing executable code

that can carry out such solutions in both distributed and parallel environments�

The multiple�grid domain decomposition method used in this paper is based on adaptive partitioning

of the domain and results in highly irregular grids as shown in the examples� The implementation of the

distributed�parallel approach presented in this paper looks very promising and its coordinator modules are

generally applicable�

CR Subject Classi�cation ������� D	�	� D�
�	� D�	��� F�
��� I�
�	�

AMS Subject Classi�cation ������� �
N
�� �
Q
��

Keywords and Phrases� distributed computing� parallel computing� coordination languages� models of

communication� computational steering� domain decomposition�

�� Introduction

In sciences� engineering� and economics� decision problems are frequently modeled as optimizing
the value of a function under some constraints� The problem in its generic form is formulated as
follows�

min f�x� subject to x � D � R
n� �����

There is an enormous amount and variety of literature about the theory and implementation
of this problem� This variety is essentially due to di�erent assumptions about the underlying
problem structure� It is not our aim to o�er the reader a tour through this literature� nor do we
intend to present a very sophisticated algorithm for a certain class of global optimization problems�
We consider solving an instance of ����� in a distributed�parallel fashion only as an example of
the application of the domain decomposition method in the 	eld of numerical computing� As a
concrete example� we use a multi
extremal function in two variables� which is to be minimized
in a certain domain� We use this function to illustrate the applicability of our generic domain
decomposition coordinator module to implement irregular� adaptive multiple
grid methods� The
same coordinators can be used without change for higher
dimensional functions as well as other
non
numeric domain decomposition problems�

If a problem can be divided into a number of sub
problems that can be solved on a cluster of
parallel computers and workstations� we may be able to signi	cantly improve the performance
of our solution� The new brand of coordination languages��
 presents a viable approach to this

	� The Manifold Coordination Language �

kind of problem decomposition� In this paper� we discuss one of our experiments using the new
coordination languageMANIFOLD to decompose an instance of the classical optimization problem
and solve it using irregular grids in a distributed�parallel fashion�

MANIFOLD is a coordination language developed at CWI �Centrum voor Wiskunde en Infor

matica� in the Netherlands� It is very well suited for managing complex� dynamically changing
interconnections among sets of independent concurrent cooperating processes� Although parallel
computing and distributed computing are quite distinct in nature� they can both serve to improve
performance� Distributed computing is related to the emergence of computer networks� computer
applications move from single stand
alone mainframes to multiple communicating local worksta

tions� Parallel computing arose from the quest to fundamentally improve the speed of sequential
computation by using multiple processing units� From the language point of view� MANIFOLD
does not make a distinction between a multiprocessor mainframe and a simple one
processor work

station� This feature makesMANIFOLD a very powerful tool for problem solving in heterogeneous
computing environments�

To grow accustomed to theMANIFOLD language� in section � we give a brief introduction to the
MANIFOLD language� In section � we start with the inevitable �Hello World�� program to show
some of the syntax and semantics of MANIFOLD� It is beyond the scope of this paper to present
the details of the syntax and semantics of the MANIFOLD language�� In section � we present our
optimization problem and describe the parallel�distributed domain decomposition� We close this
paper with a short conclusion in section ��

�� The Manifold Coordination Language

In this section� we brie�y introduce MANIFOLD� a coordination language for managing com

plex� dynamically changing interconnections among sets of independent� concurrent� cooperating
processes��
�

A MANIFOLD application consists of a �potentially very large� number of �light
 and�or heavy

weight� processes running on a network of heterogeneous hosts� some of which may be parallel
systems� Processes in the same application may be written in di�erent programming languages�
Some of them may not know anything about MANIFOLD� nor the fact that they are cooperating
with other processes through MANIFOLD in a concurrent application�

The MANIFOLD system consists of a compiler� a run
time system library� a number of utility
programs� libraries of builtin and prede	ned processes��
� a link 	le generator called MLINK and a
run
time con	gurator called CONFIG� The system has been ported to several di�erent platforms
�e�g�� SGI ���� SUN �� Solaris ���� and IBM SP���� MLINK uses the object 	les produced by the
�MANIFOLD and other language� compilers to produce link 	les needed to compose the application
executable 	les for each required platform� At the run time of an application� CONFIG determines
the actual host�s� where the processes which are created in the MANIFOLD application will run�

The library routines that comprise the interface between MANIFOLD and processes written in
other languages �e�g� C�� automatically perform the necessary data format conversions when data
is routed between various di�erent machines�

��� Conceptual Model
MANIFOLD is based on the Idealized Worker Idealized Manager �IWIM� model of communication��
�
In this section we brie�y describe this model and discuss its advantages over the Targeted�
Send�Receive �TSR� model on which object
oriented programming models and tools such as
PVM��
� PARMACS���
� and MPI���� �
 are based�

The basic concepts in the IWIM model �thus also in MANIFOLD� are processes� events� ports�
and channels �in MANIFOLD called streams�� We discuss these concepts in sections ��� through
���� Unlike the TSR model� there is no way in the IWIM model for a process to explicitly send a

�For more information� refer to our html pages located at http���www�cwi�nl�cwi�projects�manifold�html�

	� The Manifold Coordination Language �

message to or receive a message from another process� �normal� worker processes can only pro

duce their output� consume their input� and broadcast events� It is the job of special manager
processes to coordinate the communication among their worker processes by establishing a dynam

ically changing data
�ow network of point
to
point connections� We can illustrate the di�erences
between the TSR and the IWIM models through the following simple example�

Consider an application that consists of the two processes p and q� The partial results m� and
m� produced by p are needed by q� which in turn uses them to compute another result� m� to be
used by p�

In the TSR model this abstract communication scenario results in the following TSR pseudo
code�

1 *********************
2 * A TSR pseudo code *
3 *********************
4
5 process p
6 begin
7 compute m1
8 send m1 to q
9
10 compute m2
11 send m2 to q
12
13 do other things
14
15 receive m
16 do other computation using m
17 end
18
19 process q
20 begin
21 receive m1
22
23 receive m2
24
25 (let z be the sender of m1 and m2)
26
27 compute m using m1 and m2
28 send m to z
29 end

In the IWIM model this scenario is expressed as the following IWIM pseudo code�

1 **********************
2 * A IWIM pseudo code *
3 **********************
4
5 process p
6 begin
7 compute m1
8 write m1 to output port o1
9
10 compute m2
11 write m2 to output port o2
12
13 do other things
14
15 read m from the input port i1
16 do other computation using m
17 end
18
19 process q
20 begin
21 read m1 from input port i1
22
23 read m2 from input port i2
24
25 compute m using m1 and m2
26
27 write m to output port o1
28 end
29
30 process c
31 begin
32 create the processes p and q
33
34 create the channel p.o1 -> q.i1
35 create the channel p.o2 -> q.i2
36 create the channel q.o1 -> p.i1
37
38 follow some termination protocol
39 end

Some of the signi	cant di�erences between the above two pieces of pseudo code are summarized
below�

� The cooperation model in the TSR pseudo code is implicit whereas in the IWIM pseudo code
it is explicit�

	� The Manifold Coordination Language �

This TSR pseudo code is simultaneously both a description of what computation is performed
by p and q� and a description of how they cooperate with each other� The communication
concerns �lines �� ��� ��� ��� ��� ��� are mixed and interspersed with computation �lines ��
��� ��� ���� Thus� in the 	nal source code of the application� there will be no isolated piece
of code that can be considered as the realization of its cooperation model�

In the IWIM pseudo code we see that all the communication concerns are moved out of p
and q into an isolated piece of code that is the process c� Note that in this code p and q do
not explicitly communicate with each other as is the case in the TSR version� Here p and
q are treated as black
box workers that can only read or write through the openings �called
ports� in their own bounding walls� It is a third manager or coordinator process� c� that is
responsible for setting up the communication channels between the di�erent ports of p and
q� On the lines ��
�� we use the notation p�i to refer to the port i of the process instance
p� e�g�� line �� states that a channel is created between the o� output port of p and the i�
input port of q�

� The separation of computational concerns and communication concerns in the IWIM model�
leads to two types of processes in this model� worker processes and manager �or coordinator�
processes� In the TSR model all processes have the same hybrid form�

In the IWIM pseudo code� p and q can be regarded as �ideal� workers� They do not know
and do not care where their input comes from� nor where their output goes to� They know
nothing about the pattern of cooperation in this application� they can just as easily be
incorporated in any other application� and will do their job provided that they receive �the
right� input at the right time�

The process c is an �ideal� manager� It knows nothing about the details of the tasks
performed by p and q� Its only concern is to ensure that they are created at the right time�
receive the right input from the right sources� and deliver their results to the right sinks�
It also knows when additional new process instances are supposed to be created� how the
network of communication channels among processes must change in reaction to signi	cant
event occurrences� etc� �none of which is actually a concern in this simple example��

� The separation of computation and coordination responsibilities into distinct worker and
manager processes in the IWIM model enhances their re
usability�

The fact that an ideal worker does not know and does not care where its input comes from�
nor where its output goes to� weakens its implicit dependence on its environment� strengthens
its modularity� and enhances its re
usability� Also� the fact that an ideal manager process
knows nothing about the computation performed by the workers it coordinates� makes it
generic and re
usable� In the IWIM model� the cooperation protocols for a concurrent appli

cation can be developed modularly as a set of coordinator processes� It is likely that some
of such ideal managers� individually or collectively� can be used in other applications� co

ordinating very di�erent worker processes� producing very di�erent results� as long as their
cooperation follows the same protocol� the same coordinator processes can be used �see ��

for more details and a concrete example�� Modularity and re
usability of the coordinator
processes also enhance the re
usability of the resulting software�

� The IWIM pseudo code is easier to adapt to new requirements than the TSR pseudo code�

The �Targeted Send� in the TSR pseudo code creates a stronger coupling between the pro

cesses than is really necessary� Because of this� the TSR pseudo code is less easy to adapt
to new requirements than the IWIM pseudo code� This becomes clear when we notice the
asymmetry between send and receive operations in the TSR model� Every send must spec

ify a target for its message� whereas a receive can receive a message from any anonymous
source�� In our example� p must know q� otherwise� it cannot send a message to it� The

�In some message passing models� an optional source can be speci�ed in a receive� Although this makes re�
ceive look symmetric to send in its appearance� semantically� they are still very di�erent� A send is semantically

	� The Manifold Coordination Language �

proper functioning of p depends on the availability of another process in its environment
that ��� must behave as p expects �i�e�� be prepared to receive m� and m��� and ��� must
be accessible to p through the name q� On the other hand� p does not �need to� know the
source of the message it receives as m� And this ignorance is a blessing� If after receiving
m� and m�� q decides that the 	nal result it must send back to p is to be produced by yet
another process� x� p need not be bothered by this �delegation� of responsibility from q to
x�

We can better appreciate the signi	cance of the asymmetry between send and receive in a
tangible form when we compare the processes p and q with each other� The assumptions
hard
wired into q about its environment �i�e�� availability and accessibility of other processes
in the concurrent application� are weaker than those in p� The process q waits to receive
a message m� from any source� which it will subsequently refer to as z� expects a second
message m� �which it can verify to be from the same source� z� if necessary�� computes
some result� m� and sends it to z� The behavior of the process p� on the other hand� cannot
be described without reference to q� The weaker dependence of q on its environment� as
compared with p� makes it a more reusable process that can perform its service for other
processes in the same or other applications�

Note� however� that q is not as �exible as we may want it to be� the fact that the result of
its computation is sent back to the source of its input messages is something that is hard

wired in its source code� due to its 	nal targeted send� If� perhaps in a di�erent application
environment� we decide that the result produced by q is needed by another process� y� instead
of the same process� z� that provides it with m� and m�� we have no choice but to modify
the source code for q� This is a change only to the cooperation model in the application� not
a change to the substance of what q does� The unfortunate necessity of modi	cation to the
source code of q� in this case� is only a consequence of its targeted send�

The IWIM model avoids the negative in�uence of the TSR model on the program structure��
�
Speci	cally� in our case study reported here� we demonstrate how easy it is with an IWIM based tool
such asMANIFOLD� to adapt a parallel�distributed application to new requirements� Furthermore�
the general applicability of the coordinator modules in our case study is something that is inherent
in IWIM� This degree of �exibility and re
usability is not possible with TSR
based tools and
languages such as PVM�

��� Processes
In MANIFOLD� the atomic workers of the IWIM model are called atomic processes� Any operating
system
level process can be used as an atomic process in MANIFOLD� However� MANIFOLD also
provides a library of functions that can be called from a regular C function running as an atomic
process� to support a more appropriate interface between the atomic processes and theMANIFOLD
world� Atomic processes can only produce and consume units through their ports� generate and
receive events� and compute� In this way� the desired separation of computation and coordination
is achieved�

Coordination processes are written in the MANIFOLD language and are called manifolds� The
MANIFOLD language is a block
structured� declarative� event driven language� A manifold de	ni

tion consists of a header and a body� The header of a manifold gives its name� the number and
types of its parameters� and the names of its input and output ports� The body of a manifold def

inition is a block� A block consists of a 	nite number of states� Each state has a label and a body�
The label of a state de	nes the condition under which a transition to that state is possible� It is
an expression that can match observed event occurrences in the event memory of the manifold�

meaningless without a target� On the other hand� a receive without a source is always meaningful� The function
of the optional source speci�ed in a receive is to �lter incoming messages based on their sources� This is only a
convenience feature 	 the same e�ect can also be achieved using an unrestricted receive followed by an explicit
�ltering�

� Hello World� �

The body of a simple state de	nes the set of actions that are to be performed upon transition to
that state� The body of a compound state is either a �nested� block� or a call to a parameterized
subprogram known as a manner in MANIFOLD� A manner consists of a header and a body� As
for the subprograms in other languages� the header of a manner essentially de	nes its name and
the types and the number of its parameters� A manner is either atomic or regular� The body of a
regular manner is a block� The body of an atomic manner is a C function that can interface with
the MANIFOLD world through the same interface library as for the compliant atomic processes�

��� Streams
All communication in MANIFOLD is asynchronous� In MANIFOLD� the asynchronous IWIM chan

nels are called streams� A stream is a communication link that transports a sequence of bits�
grouped into �variable length� units�

A stream represents a reliable and directed �ow of information from its source to its sink� As in
the IWIM model� the constructor of a stream between two processes is� in general� a third process�
Once a stream is established between a producer process and a consumer process� it operates
autonomously and transfers the units from its source to its sink� The sink of a stream requiring
a unit is suspended only if no units are available in the stream� The suspended sink is resumed
as soon as the next unit becomes available for its consumption� The source of a stream is never
suspended because the in	nite bu�er capacity of a stream is never 	lled�

There are four basic stream types designated as BB� BK� KB� and KK� each behaving according to
a slightly di�erent protocol with regards to its automatic disconnection from its source or sink�
Furthermore� in MANIFOLD� the BK and KB type streams can be declared to be reconnectable� See
��
 or ��
 for details�

��� Events and State Transitions
In MANIFOLD� once an event is raised by a process� it continues with its processing� while the
event occurrence propagates through the environment independently� Any receiver process that
is interested in such an event occurrence will automatically receive it in its event memory� The
observed event occurrences in the event memory of a process can be examined and reacted on by
this process at its own leisure� In reaction to such an event occurrence� the observer process can
make a transition from one labeled state to another�

The only control structure in the MANIFOLD language is an event
driven state transition mech

anism� More familiar control structures� such as the sequential �ow of control represented by
the connective ��� �as in Pascal and C�� conditional �i�e�� �if�� constructs� and loop constructs
can be built out of this event mechanism� and are also available in the MANIFOLD language as
convenience features�

Upon transition to a state� the primitive actions speci	ed in its body are performed atomically
in some non
deterministic order� Then� the state becomes preemptable� if the conditions for
transition to another state are satis	ed� the current state is preempted� meaning that all streams
that have been constructed are dismantled and a transition to a new state takes place� The most
important primitive actions in a simple state body are ��� creating and activating processes� ���
generating event occurrences� and ��� connecting streams to the ports of various processes�

�� Hello World�

Consider a simple program to print a message such as �Hello World�� on the standard output�
The MANIFOLD source 	le for this program contains the following�

1 manifold printunits import.
2
3 auto process print is printunits
4
5 manifold Main
6 {
7 begin: "Hello World!" -> print.
8 }

� Hello World� 	

The 	rst line of this code de	nes a manifold named printunits that takes no arguments� and
states �through the keyword import� that the real de	nition of its body is contained in another
source 	le� This de	nes the �interface� to a process type de	nition� whose actual �implementation�
is given elsewhere� Whether the actual implementation of this process is an atomic process �e�g��
a C function� or it is itself another manifold is indeed irrelevant in this source 	le� We assume
that printunits waits to receive units through its standard input port and prints them� When
printunits detects that there are no incoming streams left connected to its input port and it is
done printing the units it has received� it terminates�

The second line of code de	nes a new instance of the manifold printunits� calls it print� and
states �through the keyword auto� that this process instance is to be automatically activated upon
creation� and deactivated upon departure from the scope wherein it is de	ned� in this case� this is
the end of the application� Because the declaration of the process instance print appears outside
of any blocks in this source 	le� it is a global process� known by every instance of every manifold
whose body is de	ned in this source 	le�

The last lines of this code de	ne a manifold named Main that takes no parameters� Every
manifold de	nition �and therefore every process instance� always has at least three default ports�
input� output� and error� The de	nition of these ports are not shown in this example� but the
ports are de	ned for Main by default�

The body of this manifold is a block �enclosed in a pair of braces� and contains only a single
state� The name Main is indeed special in MANIFOLD� there must be a manifold with that name
in every MANIFOLD application and an automatically created instance of this manifold� called
main� is the 	rst process that is started up in an application� Activation of a manifold instance
automatically posts an occurrence of the special event begin in the event memory of that process
instance� in this case� main� This makes the initial state transition possible� main enters its only
state � the begin state�

The begin state contains only a single primitive action� represented by the stream construction
symbol� ���� Entering this state� main creates a stream instance �with the default BK
type� and
connects the output port of the process instance on the left
hand side of the � to the input port
of the process instance on its right
hand side� The process instance on the right
hand side of the
� is� of course� print� What appears to be a character string constant on the left
hand side of the
� is also a process instance� conceptually� a constant in MANIFOLD is a special process instance
that produces its value as a unit on its output port and then dies�

Having made the stream connection between the two processes� main now waits for all stream
connection made in this state to break up �on at least one of their ends�� The stream breaks up� in
this case� on its source end as soon as the string constant delivers its unit to the stream and dies�
Since there are no other event occurrences in the event memory of main� the default transition for
a state reaching its end �i�e�� falling over its terminator period� now terminates the process main�

Meanwhile� print reads the unit and prints it� The stream type BK ensures that the connection
between the stream and its sink is preserved even after a preemption� or its disconnection from
its source� Once the stream is empty and it is disconnected from its source� it automatically
disconnects from its sink� Now� print senses that it has no more incoming streams and dies� At
this point� there are no other process instances left and the application terminates�

"Hello World!" print

Figure �� �Hello World� in Manifold

Note that our simple example� here� consists of three process instances� two worker processes�
a character string constant and print� and a coordinator process� main� Figure � shows the rela

tionship between the constant and print� as established by main� Note also that the coordinator

�� Domain Decomposition

process main only establishes the connection between the two worker processes� It does not trans

fer the units through the stream�s� it creates� nor does it interfere with the activities of the worker
processes in other ways�

�� Domain Decomposition

Consider the following general global optimization problem� given a bounded� D � R
n� and a

continuous function f � D � R� solve

min f�x� subject to x � D� �����

As an instance of ����� we take the Goldstein and Price function�

min z � �� � �x � y � ������� ��x � �x� � ��y � �xy � �y��� �����

��� � ��x� �y������ ��x � ��x� � ��y � ��xy � ��y���

with �x� y� � �
���� ���

Figure � shows the landscape formed by this function in its domain� Although at this scale the
detailed �bumpiness� of this function cannot be seen� this 	gure still shows the potential di�culty
of the general problem ������

-2
-1

0
1

2
x

-2

-1

0

1

2

y

0

200000

400000

600000

800000

1e+06

Figure �� The Goldstein and Price function

Analytical solutions to such problems are� in general� non
existent and domain decomposition
is a common search technique used to solve them through numerical methods� Domain decom

position imposes a grid on the domain of the function� splitting it into a number of sub
domains�
as determined by the size of the grid� Next� we obtain a �number of� good rough estimate�s�
for the lowest value of z in each sub
domain� Then� we either use the best obtained estimate
for the optimum z value� or select the sub
domains with the most promising z values and de

compose them into smaller sub
domains� In iterative re	nement methods� new estimates for the
lowest value of z in each of these sub
domains� recursively� narrow this search process further

�� Domain Decomposition �

and further into smaller and smaller regions that �hopefully� tend towards the area with the real
minimum z� while the estimates for the obtained minimum z values become more and more ac

curate� In iterative single
grid domain decomposition� the same grid is imposed on all successive
sub
domains� Multiple
grid adaptive domain decomposition techniques allow a di�erent grid for
each sub
domain� whose granularity and other properties may depend on the attributes of the
sub
domain and those of the function within that region�

A simple domain decomposition program is presented in section ���� In section ��� we modify this
program to handle iterative re	nement and multiple� adaptive grids� In section ��� we visualize
the numerical results of this program� and in section ��� we evolve our program into a simple
computational steering application�

��� Single�grid Domain Decomposition
The following MANIFOLD program shows a non
iterative single
grid domain decomposition appli

cation�

1 manifold PrintObjects atomic {internal.}.
2 manifold Split atomic {internal.}.
3 manifold AtomicEval(event, port in) atomic {internal.}.
4 manifold Eval forward.
5 manifold Merger port in a, b. atomic {internal.}.
6
7 /***/
8 manifold Main
9 {
10 auto process split is Split.
11 auto process eval is Eval.
12 auto process print is PrintObjects.
13
14 begin: <<1, -2.0, -2.0, 2.0, 2.0, 5, 5>> -> split -> eval -> print.
15 }
16
17 /***/
18 manifold Eval()
19 {
20 event filled, flushed, finished.
21
22 process atomeval is AtomicEval(filled, 1000).
23
24 stream reconnect KB input -> *.
25
26 priority filled < finished.
27
28 begin:
29 (
30 activate(atomeval), input -> atomeval,
31 guard (input, a_everdisconnected ! empty, finished) // no more input
32).
33
34 finished:
35 {
36 ignore filled. //possible event form atomeval
37
38 begin: atomeval -> output. //your output is only that of atomeval
39 }.
40
41 filled:
42 {
43 process merge<a, b | output> is Merger.
44
45 stream KK * -> (merge.a, merge.b).
46 stream KK merge -> output.
47
48 begin:
49 (
50 activate(merge), input -> Eval -> merge.a,
51 atomeval -> merge.b, merge -> output
52).
53
54 finished:. //do nothing and leave this block
55 }.
56
57 end:
58 {
59 begin:
60 (
61 guard(output, a_disconnected, flushed), // ensure flushing
62 terminated(void) //wait for units to flush through output
63).
64
65 flushed: halt.
66 }.
67 }

The main manifold in this application creates split� eval� and print as instances of manifold
de	nitions Split� Eval� and PrintObjects� respectively �line ��
���� It then connects the output
of a process instance which produces a unit that describes a domain and its decomposition �in our

�� Domain Decomposition �

case� �� ��� to the input port of split� the output port of split to the input port of eval� and
the output port of eval to the input port of print� The process main terminates when all three
connections are broken�

The code for Split is a C function� An instance of Split reads from its input port a unit that
describes a �sub
�domain and the speci	cation of a grid� produces units on its output port that
describe the sub
domains obtained by imposing the grid on this input domain� and terminates�

An instance of Eval is expected to read all the sub
domains �in this case� there are ��� from its
input port� It then 	nds the best estimate for the optimum z value in each of its sub
domains�
produces through its output port an ordered sequence of units describing the best solutions it has
found� and terminates�

PrintObjects is implemented as a C function� An instance of PrintObjects simply prints the
units it reads from its input� each of which describes a �sub
�domain and the x� y� and z values
for the estimated minimum z value found at the point �x� y� in that domain�

Up to now our program looks as easy as the �Hello World�� program in section �� However�
because we want to solve our optimization problem in a distributed�parallel fashion the Eval is
more complex� We already mentioned what the manifold Eval is supposed to do� now we discuss
how Eval does it� An instance of Eval coordinates the cooperation of instances of two other
manifolds� namely AtomicEval and Merger�

AtomicEval is implemented as a C function� An instance of AtomicEval reads a bucket of s � �
sub
domains �for simplicity� let s � �� from its input port and raises a speci	c event� which it
receives as a parameter� to inform other processes that it has 	lled up its input bucket with s

sub
domain descriptions� It then 	nds the best estimate for the optimum z value in each of its
sub
domains� producing an ordered sequence of units describing the best solutions it has found
through its output port� and terminates� The algorithm used by AtomicEval to 	nd the estimates
for the optimum z value in a sub
domain is completely internal to this computation module and is
irrelevant for our purposes in this paper� In our example� we use sampling� we simply evaluate z

for a number of �say ����� sample points in each sub
domain and consider the sample point with
the minimum z as the best estimate for that sub
domain�

Merger is also implemented as a C function� An instance of Merger reads from its ports a and
b two ordered sequences of units describing sub
domains and their best estimates� and produces
a sequence of one or more of its best sub
domains on its output port�

As noted above� an instance of Eval receives through its input port an unknown number of
units that describe �sub
�domains� It is supposed to feed as many of its own input units to an
atomic evaluator as the latter can take� feed the rest of its own input as the input to another copy
of itself� merge the two output sequences �of the atomic evaluator and its new copy�� and produce
the resulting sequence through its own output port� Let us follow the source code of the manifold
Eval in more detail�

In its begin state� an instance of Eval connects its own input to an instance of the AtomicEval�
it calls atomeval� It also installs a guard on of its own input port� This guard posts the event
finished if it has an empty stream connected to its departure side� after the arrival side of this
port has no more stream connections� following a 	rst connection� This means that the event
finished is posted in an instance of Eval after a 	rst connection to the arrival side of its input

is made� then all connections to the arrival side of its input are severed� and all units passed
through this port are consumed� The connections in this state are shown in Figure ��a�

Two events can preempt the begin state of an instance of Eval� ��� if the incoming stream
connected to input is disconnected �no more incoming units� and atomeval reads all units available
in its incoming stream� the guard on input posts the event finished� and ��� the process atomeval
can read its 	ll and raise the event filled� Normally� only one of these events occurs� however�
when the number of input units is exactly equal to the bucket size� s� of atomeval� both finished

and filled can occur simultaneously� In this case� the priority statement makes sure that the

�� Domain Decomposition ��

output

(c)

b

merge

input a

input

output

atomeval

New Eval

atomevalatomeval

(b)(a)

Figure �� The connections made in the di�erent states of Eval

handling of finished takes precedence over filled�

Assume that the number of units in the input supplied to an instance of Eval is indeed less than
or equal to the bucket size s of an atomic evaluator� In this case� the event finished will preempt
the begin state and cause a transition to its corresponding state in Eval� In this state� we ignore
the occurrence of filled that may have been raised by atomeval �if the number of input units is
equal to the bucket size s�� and deliver the output of atomeval as the output of the Eval� The
connections in this state are shown in Figure ��b�

Now suppose the number of units in the input supplied to an instance of Eval is greater than
the bucket size s of an atomic evaluator� In this case� the event filled will preempt the begin

state and cause a transition to its corresponding state in Eval� In this state we create an instance
of the merger process� called merge� A new instance of the Eval is created in the begin state of
the nested block� The rest of the input is passed on as the input to this new Eval� its output is
merged with the output of the atomic evaluator� and the result is passed as the output of the Eval

instance itself� The connections in this state are shown in Figure ��c� An occurrence of finished
in this state preempts the connected streams and causes a transition to the local finished state
in this block� This preemption is necessary to inform the new instance of Eval �by breaking the
stream that connects input to it� that it has no more input to receive� so that it can terminate�
The empty body of the finished state means that it causes an exit from its containing block�

In the end state� an Eval instance installs a guard on its output port to post the event flushed
after there is no stream connected to the arrival side of this port following its 	rst connection� This
means that the event flushed is posted in an instance of Eval after a connection is made to its
arrival side� and all units arriving at this port have passed through� The Eval instance then waits
for the termination of the special prede	ned process void� which will never happen �the special
process void never terminates�� This e�ectively causes the Eval instance to hang inde	nitely�
The only event that can terminate this inde	nite wait is an occurrence of flushed which indicates
there are no more units pending to go through the output port of the Eval instance�

The output of our program� below� shows the result produced by �� instances of AtomicEval�
each taking in the description of a single sub
domain� The top line shows the best estimate for its
global minimum to be ����� at point �������
�������

domain = (-0.400, -1.200) (0.400, -0.400) point = (0.006, -1.015), z = 3.126
domain = (-1.200, -1.200) (-0.400, -0.400) point = (-0.588, -0.406), z = 30.074
domain = (-1.200, -0.400) (-0.400, 0.400) point = (-0.612, -0.381), z = 30.170
domain = (-0.400, -2.000) (0.400, -1.200) point = (-0.205, -1.201), z = 37.421
domain = (0.400, -1.200) (1.200, -0.400) point = (0.431, -0.701), z = 40.373
domain = (-1.200, -2.000) (-0.400, -1.200) point = (-0.415, -1.262), z = 74.628
domain = (1.200, -0.400) (2.000, 0.400) point = (1.796, 0.202), z = 84.175
domain = (0.400, -0.400) (1.200, 0.400) point = (0.890, -0.396), z = 89.792
domain = (-0.400, -0.400) (0.400, 0.400) point = (-0.369, -0.390), z = 90.973
domain = (1.200, 0.400) (2.000, 1.200) point = (1.982, 0.402), z = 153.878
domain = (0.400, -2.000) (1.200, -1.200) point = (0.408, -1.341), z = 328.497
domain = (0.400, 0.400) (1.200, 1.200) point = (1.197, 0.788), z = 840.567
domain = (1.200, -1.200) (2.000, -0.400) point = (1.218, -0.413), z = 850.707
domain = (-2.000, -0.400) (-1.200, 0.400) point = (-1.212, 0.197), z = 887.415
domain = (-2.000, -2.000) (-1.200, -1.200) point = (-1.202, -1.811), z = 1089.654

�� Domain Decomposition ��

domain = (-0.400, 0.400) (0.400, 1.200) point = (0.390, 0.405), z = 1129.976
domain = (-2.000, -1.200) (-1.200, -0.400) point = (-1.206, -0.587), z = 1482.087
domain = (1.200, 1.200) (2.000, 2.000) point = (1.586, 1.201), z = 1673.312
domain = (-2.000, 0.400) (-1.200, 1.200) point = (-1.383, 0.413), z = 2182.147
domain = (0.400, 1.200) (1.200, 2.000) point = (1.193, 1.204), z = 2980.446
domain = (-1.200, 0.400) (-0.400, 1.200) point = (-1.194, 0.411), z = 3835.324
domain = (1.200, -2.000) (2.000, -1.200) point = (1.201, -1.995), z = 15772.640
domain = (-0.400, 1.200) (0.400, 2.000) point = (0.392, 1.206), z = 21909.965
domain = (-2.000, 1.200) (-1.200, 2.000) point = (-1.993, 1.220), z = 48754.250
domain = (-1.200, 1.200) (-0.400, 2.000) point = (-0.440, 1.219), z = 102644.133

The recursive way in which the coordinator process Eval creates and coordinates its atomic
workers is interesting� These atomic workers �the numerical evaluators and the mergers� to

gether with the atomic workers created in the coordinator process main� and their connections
are shown in 	gure �� Here ei �mi� denotes the ith evaluator �merger�� dashed lines represent
the �re�connections of the same stream� and n is the recursion depth of Eval� Note that all these
processes run concurrently with each other� This means that� depending on the installation con	g

uration of the MANIFOLD system� they can run truly in parallel with each other on a distributed
and�or parallel platform�

m3

m1

m2

printsplit e1

e3

e2

en

en-1 mn-1

Figure �� The atomic processes at work�

Each MANIFOLD process runs as a separate thread �a light
weight process�� In our installation
of the MANIFOLD system on Sun and SGI machines� thirty or so of these threads are bundled
together and comprise aMANIFOLD task� Each task instance is an operating
system
level �heavy

weight� process that runs somewhere on a distributed platform� The actual host�s� where these
tasks run are speci	ed in a con	guration 	le which is read at runtime� If� e�g�� we impose a
���� ��� grid on the domain �so when the bucket size s of AtomicEval is ��� the recursion depth
of Eval is n � ����� and the con	guration 	le contains a number of SGIs� a number of SUNs� an
IBM SP��� and some Linux machines� etc�� more than �� MANIFOLD task instances are created
and spread over this heterogeneous environment and run in a distributed�parallel fashion� For
instance� on a multi
processor machine such as SGI� thirty or so threads in the same task can run
concurrently� At most k of these threads can actually be running �truly� in parallel with each
other� where k is the number of processors on the machine�

An interesting aspect of our application is the dynamic way in which Eval switches connections
among the process instances it creates �see 	gure ��� Perhaps more interesting� is the fact that�
in spite of its name� Eval knows nothing about evaluating functions� What Eval embodies is� not
any computation� but only a protocol that describes how instances of two process de	nitions �e�g��

�� Domain Decomposition ��

AtomicEval and Merger in our case� should communicate with each other �see ��
 for a detailed
treatment of this phenomenon�� A logical consequence of this clear separation of coordination and
computation concerns into distinct modules is that we can use this same protocol for a completely
di�erent pair of process de	nitions than AtomicEval and Merger� In fact� this same module is
used to implement a parallel�distributed bucket sort program as well ��
� An interesting use of
this protocol would be to optimize a multi
extremal function f in n variables for large n s in a
distributed�parallel fashion� To accomplish this� we only need to change the atomic workers� no
change to the coordinators �Eval and Main� is necessary� which means they do not even have to
be recompiled for this new application�

��� Multiple�grid Domain Decomposition
In this section we discuss a multiple
grid domain decomposition method� We initially impose a
��� grid on the domain of the function and start on each sub
domain an evaluator �AtomicEval��
The evaluator 	nds a rough estimate for the lowest value of z in its sub
domain and determines
a suitable grid �in our example� either �� � or � � �� for its further decomposition� should that
become necessary later� Our version of the evaluator proposes a � � � grid for the sub
domain
under its consideration if the function is more hilly in the x
direction than in the y
direction in this
sub
domain� otherwise� it proposes a �� � grid� With these grids we always have eight evaluators
which can �in principle� run concurrently� Of course the relationship between the domain� the
function� and the splitting scheme may be considered more carefully to yield better grids� perhaps
with more variety and more adaptively� Our particular choice of grids and the simple criterion we
use to select between them are good enough for our demonstration purposes� Note� however� that
the choice of grids� their sizes� their number� their degree of adaptivity� as well as the criteria used
for selecting among them� are all details that are internal to AtomicEval and� thus� irrelevant to
our coordination modules �Eval and Main��

Eval simply continues with selecting the sub
domain with the most promising z value and the
splitter imposes the recommended grid on it for its decomposition� New estimates for the lowest
value of z in each of these sub
domains� recursively� narrow this search process further and further
into smaller and smaller regions that �hopefully� tend towards the area with the real minimum z�
while the estimates for the obtained minimum z values become more and more accurate� We stop
this iterative decomposition algorithm when the relative improvement of the best solution found
in two successive iteration steps falls below a certain threshold� The result is a highly irregular
grid which shows the search path through the domain� The following MANIFOLD program shows
the multiple
grid domain decomposition�

1 manifold pass1 import.
2 manifold variable import.
3 manifold Eval import.
4
5 manifold PrintObjects atomic {internal.}.
6 manifold Split atomic {internal.}.
7 manifold AtomicEval(event, port in) atomic {internal.}.
8 manifold Merger port in a, b. atomic {internal.}.
9 manifold Checker(port in, port in, port in, event, event) atomic {internal.}.
10
11 #define TOL 1.0e-5
12 #define IDLE terminated(void)
13
14 /***/
15 manifold Main
16 {
17 event checkit, goon, stop.
18
19 auto process best1 is variable.
20 auto process best2 is variable.
21 auto process pr is PrintObjects.
22 stream reconnect BK * -> pr.
23
24 begin:
25 {
26 auto process p1 is pass1.
27
28 begin:
29 (
30 <<1, -2.0, -2.0, 2.0, 2.0, 2, 2>> -> Split -> Eval -> (-> pr, -> p1),
31 best2 = p1
32);
33 post(goon).
34 }.
35
36 goon:

�� Domain Decomposition ��

37 best1 = best2;
38 {
39 auto process p1 is pass1.
40
41 begin:
42 (
43 getunit(best1) -> Split -> Eval -> (-> pr, -> p1),
44 best2 = p1
45);
46 post(checkit).
47 }.
48
49 checkit:
50 (
51 Checker(best1, best2, TOL, goon, stop),
52 IDLE
53).
54
55 stop:.
56 }

Lines �
� declare the manifolds pass� and variable and Eval from the previous section� The
keyword import states that the real de	nition �i�e� the body� of these manifolds are given elsewhere
�in a library or in another source 	le�� An instance of the prede	ned manifold pass� remains idle
until its input is connected to a stream� Once this connection is made� it passes the unit it
receives on its input through its output port and terminates� An instance of the prede	ned
manifold variable repeatedly reads a unit from its input port� It remembers the unit it reads�
and if the departure side of its output is connected� it passes the unit on through its output port�
Lines ��
�� de	ne some preprocessor macros� in the same syntax as that of the C preprocessor�
These macros de	ne our symbolic constants� The main manifold contains four states �line ��� ���
�� and ���� In the begin state the stream con	guration on line �� is constructed� The output of
Eval is fanned out to the processes pr and p�� which are respectively instances of PrintObjects
�line ��� and pass� �line ���� Because we initially impose a � � � grid �line ��� on the domain�
the 	rst output of Eval consist of an ordered sequence of four units describing the best solutions
found in the four sub
domains� The 	rst unit of this sequence� containing the most promising
sub
domain to 	nd the minimum� is fed to p�� which delivers it to best� �line ��� and terminates�
When all the connections set up in lines ��
�� are broken �this happens when the tuple producer
���� ����� ����� ���� ���� �� �		� Split and Eval are done with their jobs and die� and p�

delivers its value to best�� the goon event is posted �line ��� and we switch to the goon state�
There� best� delivers its value to best� �line ���� On line ��� a unit is read from the output port
of best� �getunit
best��� and fed back to a stream con	guration similar to the one on the lines
��
��� When the connections set up on lines ��
�� are broken� the checkit event is posted �line
��� and we switch to the checkit state� In this state� an instance of the Checker manifold� which
compares best� and best�� is automatically created and activated and we wait �due to the word
IDLE on line ��� until this process raises a goon or a stop event� The Checker instance raises the
stop event when the relative improvement to the best solutions found in two successive iteration
steps is below a certain threshold �TOL� line ���� This causes a state switch to the stop state �its
body is empty� and stops the iterative domain decomposition� In the other case� a transition to
the goon state sets up another iteration step �line ��
���� The output of this program is shown
below�

domain = (-2.000, -2.000) (2.000, 2.000) s = (2, 2)

domain = (-2.000, -2.000) (0.000, 0.000) point = (-0.035, -1.003), z = 3.303 s = (2, 4)
domain = (0.000, -2.000) (2.000, 0.000) point = (0.054, -0.973), z = 3.708 s = (4, 2)
domain = (0.000, 0.000) (2.000, 2.000) point = (1.778, 0.182), z = 84.152 s = (2, 4)
domain = (-2.000, 0.000) (0.000, 2.000) point = (-0.902, 0.011), z = 313.979 s = (2, 4)

domain = (-1.000, -1.000) (0.000, -0.500) point = (-0.010, -0.997), z = 3.039 s = (2, 4)
domain = (-1.000, -1.500) (0.000, -1.000) point = (-0.044, -1.016), z = 3.462 s = (4, 2)
domain = (-1.000, -0.500) (0.000, 0.000) point = (-0.609, -0.395), z = 30.039 s = (2, 4)
domain = (-2.000, -0.500) (-1.000, 0.000) point = (-1.002, -0.085), z = 256.380 s = (2, 4)
domain = (-1.000, -2.000) (0.000, -1.500) point = (-0.750, -1.501), z = 311.659 s = (4, 2)
domain = (-2.000, -1.000) (-1.000, -0.500) point = (-1.001, -0.534), z = 496.128 s = (2, 4)
domain = (-2.000, -2.000) (-1.000, -1.500) point = (-1.000, -1.663), z = 647.851 s = (2, 4)
domain = (-2.000, -1.500) (-1.000, -1.000) point = (-1.006, -1.478), z = 1844.802 s = (2, 4)

domain = (-0.500, -1.000) (0.000, -0.875) point = (-0.005, -0.995), z = 3.021 s = (2, 4)
domain = (-0.500, -0.875) (0.000, -0.750) point = (-0.051, -0.874), z = 10.979 s = (2, 4)
domain = (-0.500, -0.750) (0.000, -0.625) point = (-0.223, -0.749), z = 27.162 s = (2, 4)
domain = (-1.000, -0.625) (-0.500, -0.500) point = (-0.501, -0.502), z = 32.732 s = (2, 4)
domain = (-0.500, -0.625) (0.000, -0.500) point = (-0.497, -0.509), z = 32.974 s = (2, 4)
domain = (-1.000, -0.750) (-0.500, -0.625) point = (-0.504, -0.632), z = 59.715 s = (4, 2)
domain = (-1.000, -0.875) (-0.500, -0.750) point = (-0.504, -0.750), z = 125.833 s = (4, 2)
domain = (-1.000, -1.000) (-0.500, -0.875) point = (-0.500, -0.881), z = 218.267 s = (2, 4)

�� Domain Decomposition ��

domain = (-0.250, -1.000) (0.000, -0.969) point = (-0.005, -0.999), z = 3.008 s = (4, 2)
domain = (-0.250, -0.969) (0.000, -0.938) point = (0.000, -0.968), z = 3.440 s = (4, 2)
domain = (-0.250, -0.938) (0.000, -0.906) point = (-0.007, -0.937), z = 4.772 s = (4, 2)
domain = (-0.250, -0.906) (0.000, -0.875) point = (-0.003, -0.906), z = 7.113 s = (4, 2)
domain = (-0.500, -0.906) (-0.250, -0.875) point = (-0.251, -0.880), z = 31.002 s = (4, 2)
domain = (-0.500, -0.938) (-0.250, -0.906) point = (-0.252, -0.908), z = 33.062 s = (4, 2)
domain = (-0.500, -0.969) (-0.250, -0.938) point = (-0.250, -0.940), z = 34.270 s = (4, 2)
domain = (-0.500, -1.000) (-0.250, -0.969) point = (-0.250, -0.999), z = 34.737 s = (4, 2)

domain = (-0.062, -1.000) (0.000, -0.984) point = (0.000, -1.000), z = 3.000 s = (2, 4)
domain = (-0.062, -0.984) (0.000, -0.969) point = (0.000, -0.984), z = 3.109 s = (2, 4)
domain = (-0.125, -1.000) (-0.062, -0.984) point = (-0.063, -0.998), z = 4.066 s = (2, 4)
domain = (-0.125, -0.984) (-0.062, -0.969) point = (-0.063, -0.984), z = 4.301 s = (2, 4)
domain = (-0.188, -1.000) (-0.125, -0.984) point = (-0.126, -0.999), z = 8.004 s = (2, 4)
domain = (-0.188, -0.984) (-0.125, -0.969) point = (-0.125, -0.982), z = 8.319 s = (2, 4)
domain = (-0.250, -1.000) (-0.188, -0.984) point = (-0.188, -0.995), z = 17.092 s = (2, 4)
domain = (-0.250, -0.984) (-0.188, -0.969) point = (-0.188, -0.981), z = 17.473 s = (2, 4)

domain = (-0.031, -1.000) (0.000, -0.996) point = (0.000, -1.000), z = 3.000 s = (4, 2)
domain = (-0.031, -0.996) (0.000, -0.992) point = (-0.001, -0.996), z = 3.008 s = (4, 2)
domain = (-0.031, -0.992) (0.000, -0.988) point = (0.000, -0.992), z = 3.027 s = (4, 2)
domain = (-0.031, -0.988) (0.000, -0.984) point = (0.000, -0.988), z = 3.059 s = (4, 2)
domain = (-0.062, -1.000) (-0.031, -0.996) point = (-0.031, -1.000), z = 3.250 s = (4, 2)
domain = (-0.062, -0.996) (-0.031, -0.992) point = (-0.032, -0.996), z = 3.286 s = (4, 2)
domain = (-0.062, -0.992) (-0.031, -0.988) point = (-0.032, -0.992), z = 3.333 s = (4, 2)
domain = (-0.062, -0.988) (-0.031, -0.984) point = (-0.031, -0.988), z = 3.382 s = (4, 2)

As shown in the output above� the description of a single sub
domain is extended with the
recommended grid to be imposed on it if it is selected for further decomposition� The 	rst line in
this output is our initial input unit representing the whole domain and its desired splitting which
is initially set to � � � �s �
�� ���� Each succeeding group of eight lines then represents one
iteration� The best sub
domain found in each iteration is fed as input to the next iteration� The
	rst line of the last group �representing the �th iteration� shows the best solution found �z � ������
to be at �������
������� which is much better than the best solution we found using our single
�� � grid �z � ������� in section ����

It is quite common in global optimization to 	rst apply a purely random search � a very simple
and popular �folklore� approach to global optimization � as a preliminary search phase for reducing
the initially chosen search domain� The current estimate of the global optimum found in this
search can then form a starting point for a local search algorithm �e�g�� the method of steepest
descent� Newton� the conjugate gradient method� etc��� If we consider the work done in Eval as
the preliminary search phase and de	ne another manifold� LocalMinimizer� to implement our
choice of a local search method� we can easily modify our coordinator module to accommodate
such a hybrid scheme� All we need to do is change line �� into stop
 getunit
best�� �	

LocalMinimizer �	 pr�

��� Adding a Visualizer
Visualizing the results of our parallel�distributed application of the previous section can be very
informative� With MANIFOLD� this can be done in a straight
forward way� We simply make
another atomic manifold �called Show� and make some drain cocks in the MANIFOLD code of
section ��� with the stream constructor �	 and the � operator �which in a hidden way uses the
stream constructor�� This results in the MANIFOLD program below� which is almost the same as
the code in section ����

1 manifold pass1 import.
2 manifold variable import.
3 manifold Eval import.
4
5 manifold PrintObjects atomic {internal.}.
6 manifold Split atomic {internal.}.
7 manifold AtomicEval(event, port in) atomic {internal.}.
8 manifold Merger port in a, b. atomic {internal.}.
9 manifold Checker(port in, port in, port in, event, event) atomic {internal.}.
10 manifold Show atomic {internal.}.
11
12 #define TOL 1.0e-5
13 #define IDLE terminated(void)
14
15 /***/
16 manifold Main
17 {
18 event checkit, goon, stop.
19
20 auto process best1 is variable.
21 auto process best2 is variable.
22 auto process pr is PrintObjects.
23 process show is Show.
24

�� Domain Decomposition ��

25 stream reconnect BK * -> (show, pr).
26
27 begin:
28 {
29 auto process p1 is pass1.
30
31 begin:
32 (
33 activate(show),
34 <<1, -2.0, -2.0, 2.0, 2.0, 2, 2>> ->
35 (-> show, -> Split -> Eval -> (-> pr, -> p1)),
36 best2 = p1
37);
38 post(goon).
39 }.
40
41 goon:
42 best1 = best2; show = best2;
43 {
44 auto process p1 is pass1.
45
46 begin:
47 (
48 getunit(best1) -> Split -> Eval -> (-> pr, -> p1),
49 best2 = p1
50);
51 post(checkit).
52 }.
53
54 checkit:
55 (
56 Checker(best1, best2, TOL, goon, stop),
57 IDLE
58).
59
60 stop: show = best2.
61 }

The irregular grid in 	gure � shows the iterative search process in the domain towards the best
solution �z � ������ at point �������
������� In this 	gure we can �partly� follow the splitting
sequence which� as we know from the previous section� uses the grids � � �� � � �� � � �� � � ��
�� �� and �� �� Due to the scale of this 	gure� only a part �the 	rst three grids� of this irregular
splitting can be seen clearly�

Figure �� The visualizer

The Show manifold is simple to implement in C using a portable graphic library �e�g� Phigs�
GKS� OpenGL� and a portable widget library�

�� Domain Decomposition �	

The adding of the visualizer clearly shows the �plumbing� aspect of MANIFOLD programming�
no explicit action is necessary to �move� information around in MANIFOLD � provide the pipes
�with �	 or�and �� and the units will �ow�

��� Computational Steering Through a GUI
In this section we extend the Show manifold of section ��� with a simple graphical user interface
�GUI� with some steering facilities� With this GUI we can select a domain by mouse �by drawing
a rectangle� and start �by pressing mouse buttons� the iterative recursive domain decomposition
of section ��� on that domain� We call the work which has to be done on such a selected domain
a �cluster�� The processes contained in clusters are spread out over the computers speci	ed in
a con	guration 	le �see section ����� This is completely transparent to the user� A user only
needs to supply a list of his favorite machines in a con	guration 	le� Once a cluster is started
by a mouse click� it sends its identi	cation back to the GUI� which is shown in the area above
the �show� button� In 	gure �� we see three clusters �c�� c� and c��� Selecting� e�g�� c� and c�

�whose identi	cations are highlighted� and pressing the show button results in the GUI as shown
in 	gure �� In this 	gure� in addition to the global minimum of ����� at �������
������ which we
know from the previous section� a local minimum of ������ at ������� ������ is also shown�

Figure �� The simple GUI

Another facility of the GUI is its ability to deactivate a cluster �by selecting the cluster and
clicking on the deactivate button�� Consequently� the selected area of a deactivated cluster gets
a black border to indicate its termination� Also� the clusters which terminate normally get the
same black border�

With this simple GUI we can interactively explore the domain of the optimization problem in a
distributed�parallel fashion� Below we give the manifold source code for this distributed�parallel
computational steering example�

1 manifold pass1 import.

�� Domain Decomposition �

2 manifold variable import.
3 manifold Eval import.
4 manifold variable(port in) import.
5 manifold semaphore() port in tokens. port in senders. import.
6 manner locksema (process s) import.
7 manner unlocksema (process s) import.
8
9 manifold PrintObjects atomic {internal.}.
10 manifold Split atomic {internal.}.
11 manifold AtomicEval(event, port in) atomic {internal.}.
12 manifold Merger port in a, b. atomic {internal.}.
13 manifold Checker(port in, port in, port in, event, event) atomic {internal.}.
14 manifold Show atomic {internal.}.
15 manifold Cluster forward.
16
17 auto process sema is semaphore.
18 auto process show is Show.
19 auto process index is variable(0).
20
21 stream reconnect BK * -> show.
22
23 #define TOL 1.0e-5
24 #define IDLE terminated(void)
25
26 /***/
27 manifold Main
28 {
29 event again.
30
31 auto process dom is variable.
32
33 begin: dom = show; post(again).
34
35 again: getunit(dom) -> Cluster; post(begin).
36
37 end:.
38
39 }
40
41 /***/
42 manifold Cluster
43 {
44 event best_consumed, checkit, goon, stop.
45
46 auto process best1 is variable.
47 auto process best2 is variable.
48 auto process pr is PrintObjects.
49 auto process ind is variable.
50
51 stream reconnect BK * -> pr.
52
53 begin:
54 locksema(sema); ind = index; index = index + 1; unlocksema(sema);
55 (
56 activate(show), <<ind, &self>> -> show, best1 = input
57);
58 <<ind, best1>> -> show;
59 {
60 auto process p1 is pass1.
61
62 begin:
63 (
64 getunit(best1) -> Split -> Eval -> (-> pr, -> p1),
65 best2 = p1
66);
67 post(goon).
68 }.
69
70 goon:
71 best1 = best2; <<ind, best2>> -> show;
72 {
73 auto process p1 is pass1.
74
75 begin:
76 (
77 getunit(best1) -> Split -> Eval -> (-> pr, -> p1),
78 best2 = p1
79);
80 post(checkit).
81 }.
82
83 checkit:
84 (
85 Checker(best1, best2, TOL, goon, stop),
86 IDLE
87).
88
89 stop: <<ind, best2>> -> show.
90
91 terminate | end: <<ind, &end>> -> show.
92
93 }

After the detailed explanation of the previous examples� it is su�cient to mention only the
di�erences with the MANIFOLD code in section ���� To create a unique identi	cation for the
clusters we use the process index which is an instance of variable �line ���� Every time a cluster
is created� it reads this variable and increments it by � to get the index for the next cluster �line
���� Because the clusters run in parallel� we must prevent the situation where two or more clusters
read and increment index at the same time� For this protection we use semaphores �line �
��� Of

�� Conclusions ��

course� we should also adapt the manifold Show to the new requirements �to handle mouse input�
etc�� but that is just a straight
forward adaption of the C code� The remainder of this code is
either already discussed in previous examples� or is just details�

�� Conclusions

MANIFOLD is a new coordination language for orchestration of the cooperation among large sets of
concurrent processes that comprise parallel and�or distributed applications� One of the advantages
ofMANIFOLD is that it makes no distinction �that is visible to a programmer� between distributed
and parallel environments� the same MANIFOLD code can run in both� A unique characteristic of
MANIFOLD is its separation of computation concerns from communication concerns into distinct
program modules� This leads to reusable pure
computation and reusable pure
coordination mod

ules with little dependency on their application environments� All these features makeMANIFOLD
a suitable framework for the construction of modular software to solve irregular problems on par

allel and�or distributed platforms�

Our experiment using MANIFOLD for this type of applications deals with an instance of the
classical optimization problem� The emphasis of our work is on the construction and validation
of the protocol modules necessary for this and other �numeric and non
numeric� applications�
MANIFOLD allows such coordination modules to be compiled separately �and in isolation from
any computation code�� and stored in protocol libraries� whereby they can be subsequently linked
with various separately compiled pure
computation modules to build running applications� Thus�
the same coordinator modules described in this paper can be �and� indeed� are� used in various
other domain decomposition applications as well as other non
numeric applications that use a
similar splitting scheme�

Another important feature of MANIFOLD is its underlying plumbing paradigm which makes it
easy � as we saw in our examples with the addition of Show � to compose and recomposeMANIFOLD
applications and adapt them to new requirements� This has also lead to very promising results
in the area of restructuring of existing sequential programs to run on distributed and parallel
environments��
� We are beginning new joint projects where the practical utility of MANIFOLD
will be evaluated in the context of real commercial applications� many of which involve parallel
and�or distributed solutions to irregular problems�

References

�� F� Arbab� Coordination of massively concurrent activities� Technical Report CS�R�����
Centrum voor Wiskunde en Informatica� Kruislaan ���� ���� SJ Amsterdam� The Netherlands�
November ����� Available on
line http���www�cwi�nl�ftp�CWIreports�IS�CS
R�����ps�Z�

�� F� Arbab� Manifold version �� Language reference manual� Technical Report preliminary
version� Centrum voor Wiskunde en Informatica� Kruislaan ���� ���� SJ Amsterdam� The
Netherlands� �����

�� F� Arbab� The IWIM model for coordination of concurrent activities� In Paolo Ciancarini and
Chris Hankin� editors� Coordination Languages and Model� volume ���� of Lecture Notes in
Computer Science� pages ������ Springer
Verlag� April �����

�� F� Arbab� The in�uence of coordination on program structure� In submitted to HICSS��	�
IEEE� January �����

�� F� Arbab� C�L� Blom� F�J� Burger� and C�T�H� Everaars� Reusable coordinator modules for
massively concurrent applications� In Euro�Par
��� Lecture Notes in Computer Science�
Springer
Verlag� August �����

�� Jack J� Dongarra� Steve W� Otto� Marc Snir� and David Walker� An introduction to the MPI
standard� Technical Report CS
��
���� University of Tennessee� January �����

�� C� T� H� Everaars� F� Arbab� and F� J� Burger� Restructuring sequential Fortran code into a
parallel�distributed application� In Proceedings of the International Conference on Software
Maintenance
��� IEEE� November �����

References �

�� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sunderam� PVM �
user s guide and reference manual� Technical Report ORNL�TM
������ Oak Ridge National
Laboratory� September �����

�� D� Gelernter and N� Carriero� Coordination languages and their signi	cance� Communication
of the ACM� ������������� February �����

��� R� Hempel� HC� Hoppe� U� Keller� and W� Krotz� PARMACS v��� speci	cation� Technical
report� PALLAS GmbH� Hermulheimer Strasse ��� D
������ August �����

��� The Message Passing Interface Forum� MPI
 A Message Passing Interface Standard� May
����� Available on
line http���www�mcs�anl�gov�mpi�mpi
report�ps�

