Preview
Unable to display preview. Download preview PDF.
References
F. L. Bauer, Computational graphs and rounding errors, SIAM J. Numer. Anal., 11(1974), pp. 87–96.
D. J. Higham and N. J. Higham, Backward Error and Condition of Structured Linear Systems, SIAM J. Matrix Anal. Appl., v.13 1992, N1 pp. 162–175.
N. J. Higham, Bounding the error in Gaussian elimination for tridiagonal systems, SIAM J. Matrix Anal. Appl., 11(1990), No4, pp. 521–530.
R. W. Hockney and C. R. Jesshope, Parallel computers, Adam Hilger, Bristol, 1981.
J. L. Larson, M. E. Pasternak and J. A. Wisniewski, Algorithm 594: Software for relative error analysis, ACM Trans. Math. Software, 9(1983), pp. 125–130.
J. L. Larson and A. H. Sameh, Efficient calculation of the effects of roundoff errors, ACM Trans. Math. Software, 4(1978), pp. 228–236.
J. L. Larson and A. H. Sameh, Algorithms for roundoff error analysis — a relative error approach, Computing, 24(1980), pp. 275–297.
W. Miller, Remarks on the complexity of roundoff errors, Computing, 12(1974), pp. 149–161.
W. Miller, Software for roundoff error analysis, ACM Trans. Math. Software, 1(1975), pp. 108–128.
W. Miller, Graph transformations for roundoff analysis, SIAM J. Comput., 5(1976), pp. 204–216.
W. Miller and D. Spooner, Software for roundoff error analysis II, ACM Trans. Math. Software, 4(1978), pp. 369–387.
J. von Neumann and H. H. Goldstine, Numerical Inverting of Matrices of High Order, Bull. Amer. Math. Soc., 53, 1947, pp. 1021–1099.
W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right hands sides, Numer. Math., 6 (1964), pp 405–409.
G. Peters and J. H. Wilkinson, On the stability of Gauss-Jordan elimination with pivoting, Commun. ACM, 18(1975), pp. 20–24.
R. D. Skeel, Scaling for numerical stability in Gaussian elimination, J. Assoc. Comput. Mach., 26(1979), pp.494–526.
F. Stummel, Perturbation Theory for Evaluation Algorithms of Arithmetic Expression, Math. Comp., v.37, 1981, pp.435–473.
V. V. Voevodin, Computational Basis of Linear Algebra, Nauka, Moscow, 1977. (In Russian).
V. V. Voevodin, P. Y. Yalamov, A new method of roundoff error estimation, Proc. Workshop Parallel and Distributed Processing, Sofia, 1990 (K. Boyanov, Ed.), Elsevier, Amsterdam, 1990, pp. 315–333.
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yalamov, P.Y. (1994). Stability of parallel bidiagonal solvers. In: Dongarra, J., Waśniewski, J. (eds) Parallel Scientific Computing. PARA 1994. Lecture Notes in Computer Science, vol 879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030179
Download citation
DOI: https://doi.org/10.1007/BFb0030179
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58712-5
Online ISBN: 978-3-540-49050-0
eBook Packages: Springer Book Archive