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Abstrac t .  We propose a formal framework for functional logic program- 
ming, supporting lazy functions, non-determinism and polymorphic data- 
types whose data constructors obey a given set g of equational axioms. 
On top of a given g, we specify a program as a set R of g-based con- 
ditional rewriting rules for defined functions. We argue that equational 
logic does not supply the proper semantics for such programs. Therefore, 
we present an alternative logic which includes g-based rewriting calculi 
and a notion of model. We get soundness and completeness for g-based 
rewriting w.r.t, models, existence of free models for all programs, and 
type preservation results. 

1 Introduction 
The interest in multiparadigm declarative programming has grown up during the 
last decade, giving rise to different approaches to the integration of functions into 
logic programming; see [I0] for a survey. In particular, some lazy functional logic 
languages such as K-LEAF [6] and BABEL [17] have been designed to combine 
lazy evaluation and unification. This is achieved by presenting programs as re- 
writing systems and using lazy narrowing (a notion introduced in [19]) as a goal 
solving mechanism. 

Classical equational logic does not supply an adequate semantics for func- 
tional logic languages, since equations between terms that are intended to denote 
the same infinite data structure are often not deducible. Recently, a constructor 
based rewriting logic has been proposed as an alternative semantic framework 
for lazy functional logic languages [7]. This approach includes rewriting cal- 
culi, a model-theoretic semantics and a strongly complete lazy narrowing cal- 
culus for goal solving. The aim of the present paper is to extend the approach 
in [7] by introducing algebraic polymorphic datatypes, similar to those used in 
modern functional languages (see e.g. [21]), but allowing to specify a set g 
of equational axioms for the data constructors ~. For instance, we can define 
a datatype Set(a) for polymorphic sets with constructors { } :-4 Set(a) and 
{'I'} : (a, Set(a)) --+ Set(u), governed by the equational axioms {x]{ytzs}) 
{y[{x[zs}} and {x[{x[zs}} ~ {x[zs}. Simply by omitting the second equation, we 
obtain a datatype MSet(a) for polymorphic multisets. 

Data structures based on non-free constructors, specially sets and multisets, 
play an important  role in several recent proposals for extended logic program- 
ming and multiparadigm declarative programming; see e.g. [13, 4, 8, 15]. As a 

* This research has been partially supported by the the Spanish National Project 
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2 Note that user-defined datatypes are also called "algebraic" in Haskell. In spite of 
this terminology, Haskell's data constructors are free. 
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novel point, we combine non-free constructors with lazy functions and parametr ic  
polymorphism. We view a program as a set of C-based conditional rewrite rules 
to define the behaviour of lazy functions on top of a given finite set C of equational 
axioms for data constructors. As in [7], defined functions can be partial and/or  
non-deterministic, in the spirit of [12]. For instance, a non-deterministic partial 
function select : Set(a) -+ a that selects an arbitrary element from a non-empty 
set, can be defined by the single rewrite rule select({xJxs}) --+ x. 

We present a semantic framework for this kind of programs, following the lines 
of [7], but with two major modifications. Firstly, our model-theoretic semantics 
uses algebras with two carriers (for data and types, respectively), inspired by 
the polymorphically order-sorted algebras from [18]. Secondly, the constructor- 
based rewriting calculi from [7] have been modified to incorporate a set C of 
equational axioms for constructors, while respecting the intended behaviour of 
lazy evaluation. To achieve this aim, we give an inequational calculus which 
interprets each equational axiom in g as a scheme for generating inequalities 
between partial data terms (built from constructors and a bot tom symbol / ) .  
Inequalities are thought of as defining an approximation ordering. 

The rest of the paper is organized as follows: Sect. 2 sets the basic formal- 
ism, defining polymorphic signatures and expressions. In Sect. 3, we introduce 
equational axioms for data constructors along with the calculus needed to deduce 
approximation inequalities from them. In Sect. 4 we present g-based rewrite rules 
and rewriting calculi for defining lazy functions on top of a given set g of equa- 
tional axioms. This section also includes some type preservation results. Sect. 5 
deals with model theory, showing the existence of free models for programs and 
soundness and completeness results for the rewriting e~lculi w.r.t, models. The 
concluding Sect. 6 summarizes our results and points to some lines for future 

research. 
Proofs have been omitted due to lack of space. They can be found in a Tech- 

nical Report,  available at ht tp: / /mozart .mat .uem.papers/1996/TR96-39.ps-gz.  

2 Signatures, Expressions and Types 
We assume a countable set TVar of type variables ~, t3 etc., and a countable 
ranked alphabet TC = [.J~>0 TC'~ of type constructors C. Polymorphic types 
r, r' E TTc( TVar) are built-as r ::= a l C ( v l , . . . ,  vn), C E TC n. The set of type 
variables occurring in r is written tvar(r). We define a polymorphic signature 
over TC as a triple (TC,  D C, FS), where DC is a set of type declarations for data 
constructors, of the form c : ( r l , . . . ,  r , )  -+ r0 with U~=I tvar(ri) C tvar(ro) (so- 
cMled transparency property), and FS is a set of type declarations for defined 
function symbols, of the form f : ( r l , . . . , r ,~ )  --+ r0. We require that ~7 does 
not include multiple type declarations for the same symbol. The types given by 
declarations in DCU FS are called principal types. We will write h E DC ~ U FS~ 
to indicate the arity of a symbol according to its type declaration. In the following, 
DCL will denote DC extended by a new declaration .1_:-+ c~. The bot tom constant 
constructor • is intended to represent an undefined value. Analogously, Z•  will 
denote the result of replacing DC by DC• in G. 

Assuming another countable set DVar of data variables x, y, etc., we build 
expressions e,r, 1... E Expr~(DVar) a.s e ::= x th(e l , . . . , en) ,h  e DC "~ U FS'~" 
The set Expr~_(DVar) of partial expressions is defined in the same way, but 
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using DC• in place of DC. Total data terms Terms C_ Exprz(DVar ) 
and partial data terms Terms C_ Exprs177 are built by using 
variables and data constructors only. In the sequel, we reserve t, s to denote 
possibly partial  data terms, and we write dvar(e) for the set of all data  variables 
occurring in a expression e. 

We define type substitutions t~ E TSub as mappings from T Var to TTC (TVar), 
and possibly partial  data  substitutions 5 E DSub• as mappings f rom Dvar to 
Term~x (DVar). Total data substitutions 5 E DSub are mappings f rom DVar to 
Term~(DVar). Pairs (0,5), with 0 E TSub and 6 6 DSub• are called substi- 
tutions. We will use postfix notation for the result of applying substitutions to 
types and expressions. We will say that 5 E DSub• is allowed for a data  te rm t 
if 5(x) is a total term for every variable x having more than one occurrence in 
t. The notions of instance, renaming and variant have the usual definitions; see 
e.g. [3]. 

An environment is defined as any set V of type-annotated data variables x : r ,  
such that V does not include two different annotations for the same variable. The 
set of well-typed expressions w.r.t, an environment V is defined as Exprs177 (V) = 
Ur6TTc(TVar) Expr}• where e 6 Expr}• holds iff the type judgment  
V t-.~• e : r is derivable by means of the following type inference rules: 

�9 V F ~ •  
�9 V ~-~• h (e i , . . . ,  e, )  : r if V ~-E• ei : vi, where h : ( r i , . . . ,  v~) -4, v is an 

instance of the unique declared principal type associated to h in DCx U FS. 

E x p r ~ ( V )  has subsets Expr~(V), Termr~j.(V), TermS(V) that are defined in 
the natural  way. It  is easy to prove that every well-typed expression has a a most  
general principal type, which is unique up to renaming. 

3 Equations for Algebraic Const ruc tors  

We will specify the behaviour of data constructors by means of a set C of equa- 
tional axioms s ~ t, where s,t  are total data terms. Such an axiom is called 
regular iff dvar(s) = dvar(t); non-collapsing iff neither s nor t is a variable; and 
strongly regular iff regular and non-collapsing. C will be called (strongly) regular 
iff it consists of (strongly) regular equations. In the rest of the paper,  we focus 
on strongly regular axioms because strong regularity is needed for our current 
type preservation results; see Theorem 2 in section 4 below. 

We say that a strongly regular axiom c(ti , . . . , t ,~) ~ d ( s i , . . . ,  sin) is well- 
typed iff the principal type declarations for c, d have variants c : (vi, . . . ,  vn) -+ v 
and d :  ( T ~ , . . . , r ~ )  --~ r such that c ( t i , . . . , t , ) , d ( s i , . . . , s , )  E TermS(V), for 
some environment V. A set C of strongly regular axioms is called well-typed iff 
each axiom in C is well-typed. 

Example 1. Assume that Z includes the constructor declarations True, False :--~ 
Boot; Zero :-+ Nat; Suc : Nat --~ Nat; { } :-+ Set(a); and {'I '} : (a, Set(a)) -+ 
Set(a). Then, the two equational axioms {xI{ylzs}} ~ {yI{xIzs}} and {xI{xIzs}} 

{xIzs } are strongly regular and well-typed, by means of V = {x : a , y  : 
a, zs : Set(a)}. On the contrary, the strongly regular equation {Zerol{ylzs}} 
{yl{ZeroIzs}} is not welt-typed, since it does not conform to the most  general 
type of the set constructors. [] 
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In subsequent examples, we will use abbreviations such as {x, ytzs}, {x, y}, 
and {x} for the terms {xl{Yizs}} , {xl{yI{ }}} and {x]{ }}, respectively. 

Given a set C of equational axioms, the following inequational calculus allows 
to derive inequalities s _~ t, with s, t possibly partial data terms: 

I n e q u a t i o n a l  ca lcu lus  

Bottom: t :~ "  Reflexivity: ~ Transitivity: t ~ t ' ,t '  ~ t "  t ~ t" 
tl _~ s t , . . . , t~ -7  s ,  

Monotonicity: c(tt . . . .  , tn) -7 c(sl . . . .  , sn) C-]nequation: ~ if s _~ t E [C]_~ 

where t, t', t", c ( t t , . . . ,  tn), c ( s l , . . . ,  sn) E Terms .  (DVar), and: 

[C]~ = {s~ _ th, t~' -7 sh' I s ..~ t E C,5,5' E DSub • , 
- 5 and 5 ~ are allowed for s and t respectively} 

In the rest of the paper, the notation s ~_c t denotes the formal derivability 
of s _ t using the above inequational calculus for C. Moreover, we write s ~c  t 
iff s _~c t and t _3c s. Thinking of partial data terms as approximations of 
data, s ~_c t can be read as "t approximates s". Note that the formulation of C- 
inequation forbids to use the axiom {x, xlzs } ..~ {xlzs} from Example 1 to derive 
the inequality {2,  2.} ~_c {2.}, which would have undesirable consequences (see 
Example 3 in Sect. 4 below). 

Remark that ~_c and ~c  are, respectively, the least precongruence and the 
least congruence over T e r m ~ ( D V a r )  that contain [C]_~. Furthermore, if C is 
regular then for any s , t  E T e r m ~ ( D V a r ) ,  if s ~_c t and t is total then s is also 
total and s ~c  t. 

4 Defining Rules,  Programs and R e w r i t i n g  C a l c u l i  

On top of a given set C of equational axioms for data constructors, we introduce 
constructor-based rewrite rules for defined functions. More precisely, assuming a 
principal type declaration f : (~-1, . . ., vn) -+ r E FS, a defining rule for f must 
have the form: f ( t l , . . . , t n )  -+ r ~ al M b l , . . . , a m  N bin, where the left-hand 
side is linear (i.e. without multiple occurrences of variables), ti E Term~ (D Vat), 
1 < i < n, and aj ,b j , r  E Expr~(DVar), 1 < j < m. Joinability conditions 
aj I~ bj are intended to hold iff aj,bj can be reduced to some common total 
t E Terms(DVar),  as in [7]. A formal definition will be given below. 

A defining rule is called regular iff all variables occurring in r occur also in 
the left-hand side. Extra  variables in the conditions are allowed, as well as the 
inconditional case m = 0. We define programs as triples P = (S,C,T~), where L' 
is a polymorphic signature, C is a finite set of equational axioms for constructors 
in S ,  and T~ is a finite set of defining rules for defined functions symbols in S .  
We will say that a program :P is strongly regular iff g is strongly regular and all 

rules in T~ are regular. 
Programs are intended to solve goals composed of joinability conditions; i.e. 

goals will have the same form as conditions for defining rules. The express- 
ive power of algebraic constructors in our programs can be used to model ac- 
tion and change problems declaratively, avoiding the so-called frame problem [8]. 
In [8], it has been already shown that planning problems can be modeled by 
means of equational logic programs, using a binary (ACI)  operation o, to rep- 
resent situations as multisets of facts fach o . . .  o factn, and a ternary predicate 
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execPlan(initialSit, plan, finalSit) to model the transformation of an initial situation 
into a final situation by the execution of a plan. In our framework we can follow 
the same idea even more naturally, using multisets of facts to represent situ- 
ations, and a non-deterministic function execPlan : (List(Action), Mset(Fact)) --+ 
MSet(Fact) to represent the effect of plan execution. 

Next example,  adapted from [8], shows a little program which solves a very 
simple planning problem in our setting. More complicated action and change 
problems could be treated analogously. 

Example 2. A thirsty person named Bert wants to get a lemonade f rom a vending 
machine which only accepts quarters. The lemonade costs 75 cents and Bert has a 
one-dollar note. There is a cashier which changes a dollar into four quarters. The 
possible facts we have are D (a one dollar-note), Q (a quarter) and L (a lemonade). 
The available actions are GetChange and Getlemonade whose intended meaning 
can be easily deduced f rom function execAction. 

The problem of getting the lemonade can be described in our framework by 
means of the following program: 

d a t a t y p e s  Fact, Action, Mset(a), List(a) 
cons t ruc to r s  

D,Q, n :-+ Fact {'1"9 : (a, Mset(cr)) --+ Mset(a) 
GetChange, GetLemonade :--~ Action [ ] :--+ List(a) 
{ 9 :~  Mset(a) ['l'] : (cv, List(a)) ~ List(a) 

equat ions  {x, Ylxs 9 ~ {y, xlxs 9 
func t ions  

execPlan : (List(Action), Msct( ract) ) --+ MSet( ract ) 
execPlan([ ], sit) --+ sit 
execPlan([act I restAct], sit) --~ execPlan( restAct, execAction( act, sit)) 

execAction : (Action, Mset( Fact) ) --+ Mset( Fact) 
exeeAction( GetOhange, { D IotherFactsg ) --+ { Q, Q, Q, QI otherFacts 9 
execAction( GetLemonade, { Q, Q, Ol otherFacts 9 ) -+ { LI otherFacts 9 

A possible goal would be execPlan(plan,~[D]})N {I_,Q]}, for which we expect 
plan = [GetChange, GetLemonade] as a computed answer z. [] 

Some of our subsequent results refer to well-typed programs. A strongly reg- 
ular program 7 ~ = (S,  C, TO) is well-typed iff C is well-typed and every defining 
rule f ( t l , . . . , t n )  --+ r ~ C E Tr is well-typed in the following sense: there is 
some environment V such that ti E TermS(V) ,  1 < i <_ n, r E Expr~(V)  
and for all a N b C C there is some type C such that a,b E Expr~(V) .  For 
instance, if we extend Example 1 with the new declaration union : (Set(a),  
Set(a)) --+ Set(a),  the defining rule union({xlxs},  ys) -+ {xlunion(xs ' ys)} is 
well-typed, while union( { Zerolxs}, ys) --+ { Zerolunion(xs, ys) } is not, because 
the type of {Zerolxs) is too particular. 

In the rest of this section we present constructor-based rewriting calculi which 
are intended as a proof-theoretical specification of programs '  semantics. As in [7], 
our calculi are designed to derive two kinds of statements: reduction statements 
e -~ e ~, intended to mean that e can be reduced to C, and joinability statements 

3 Computing answers for goals will reqttire a suitable narrowing calculus, whose devel- 
opment is left for future work. 
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e N e', intended to mean  that  e and e'  can be reduced to some c o m m o n  tota l  
da ta  te rm.  Reduct ion s ta tements  of  the fo rm e --+ t, where t is a poss ib ly  par t ia l  
da ta  te rm,  will be called approximation statements. For a given p r o g r a m  7 ) = 
(Z ,  C, T~), the basic rewri t ing calculus (BRC) and the goal -or iented rewri t ing 
calculus (GORC) are defined as follows: 

B a s i c  R e w r i t i n g  C a l c u l u s  B R C  
e ! e H e ~ e I , --)- 

B o t t o m  : - -  Ref lex iv i ty :  - -  T rans i t i v i t y  ,, 
e - 4 /  e - -+e  e- -+e  

I el - -+e~ , . . . , en - -+en  
Monotonicity: h ( e l , . . . ,  en) --4 h(e~ . . . .  , e~) 

C 
:~-reduction: 1 --+ r if I --+ r r C E [~].., 

C-mutation: ~ if s "-1 t E [C]-1 
8 - - ' 4  - -  - -  

Join: e --+ t,e' --+ t if t E Termz(DVar) is a totaldata term 
e N e  t 

where e, e', e", h ( e i , . . . ,  en), h(e~, . . . ,  e~) E Expr~x(DVar) ,  and 

[R]_~ = { ( l  ~ r ~ C)~ I1 -+ r ~ C E 7~,~ E DSub•  } 

G o a l - O r i e n t e d  R e w r i t i n g  C a l c u l u s  GORC 

Bottom: Restricted Reflexivity: - -  e--41 x---~x 
e l  -)" tl~ �9 �9 �9 ~ e n  ---4 t n  

Decomposition: c ( e i , . . . ,  e,~) --+ c ( t l , . . . ,  tn) 

e l  "+ ~ l , . . . ~ e n  ---} ~nl 8 - 4  ~ if t #.1_, c(t )  _~ s E [C]~ Outer  C-muta t ion :  c(el, . . .  ,e,~) --~ t 

Ou te r  P..-reduction: e l  -~ t i , . . .  ,en  -~ t n , O , r  --~ t i f  t =~_L, f ( i )  -+  r ~= C E [ ~ ] _ ,  
f ( e ,  . . . . .  e . )  -* t 

Join: e ~ t',e' ~ t' e t~ e' if t' E Terms(DVar) is a total data term 

where e , e ' , c ( e i , . . . , e , ~ ) , f ( e i , . . . , e ~ )  E Exprs . (DVar ) ,  t , c ( t i , . . .  , t~) E 
T e r m s .  (DVar) and x E DVar. 

Note  that  the construct ion of [Tr does not  require ~ to be al lowed for l, in 
cont ras t  to the construct ion of [C]~ in the inequat ional  calculus. Th i s  is because  
I is known to be linear. Neither of  Ehe two calculi specifies rewri t ing in the usual  
sense. Rule Bottom shows that  e ~ t is intended to mean  "t app rox ima te s  e", 
and the const ruct ion of [7~]_+, [C]3 reflects a "cal l - t ime choice" t r e a t m e n t  of  
non-de te rmin i sm,  as explained in [12]. As the ma in  novelty w.r . t .  [7], we find 
the mutation rules C-mutation (respect.  Outer g -m utation) to deal with equat ions  
between constructors .  We have presented the two calculi because B R C  is closer 
to the intuit ion,  while the goal-oriented fo rmat  of the GORC-like calculus in [7] 
was found useful as a basis  for designing a comple te  lazy narrowing calculus.  The  
next  result  ensures that  both  calculi are essentially equivalent .  Moreover ,  they 
are compat ib le  with the inequational  calculus presented in Sect. 3. 
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T h e o r e m  1. (Ca lcu l i  e q u i v a l e n c e )  Let 7 ) = (Z,  C, Tr be a program. 
(aJ For strongly regular C, e,e' E E x p r ~  (DVar) and t E Term~.~(DVar): 

e -+ t (respect. e M e') is derivable in GORC iff e -+ t (respect. e M e') is 
derivable in BRC;  

(b) For any t , t '  e Terms t ~c  t' l i f t  -+ t' is derivable in BRC.  
(c) I f  C is regular, then for any s , t  E Term2 . (DVar) ,  s N t is derivable in 

B R C  iff s ~'c t and s , t  E Term~(DVar) .  �9 

In the rest of the paper, when we write e -+p t (respect. e •p e ~) we mean 
that e -+ t (respect. e N e t) is derivable in BRC or GORC. At this point, we can 
give an example that j ustifies why we require left-linear defining rules and allowed 
data substitutions for the construction of [C]- 7 in the inequational calculus. 

Example 3. Let P be the program obtained by extending Example 1 with the 
following function type declarations and defining rules: 

eq : (a, c~) --+ Bool unit, duo : ,get(~) --~ Bool om :-+ c~ 
eq(~, x) -~  T rue  u n i t ( { x ) )  -~  T rue  o m  - ~  om 

duo({x,y}) --~ True 
Note that the defining rule for eq is not left-linear and thus illegal. If it were 
allowed, we would obtain eq(e, e') --+7, True for arbitrary e, e' (by using e -+7,_L, 
e I -+7,_1_ and eq(_L, _L) --47, True). 

On the other hand, if we would define ~c in such a way that {_L, 1}  ___c (_l_} 
could be derived as some instance of (x,  xizs} ~ {xlzs}, we could use True -+v•  
False --+7>1 and un i t ( { •  --+7, True for obtaining unit(  { True, False}) -+7, 
True, which is not expected as a reasonable consequence from unit's defining 
rule. 

Finally, note that the inequational calculus permits {_L} _~c {_1_, J_). We can 
combine this with om -+9•  and duo({_l_, _1_}) -+7, True to obtain duo({om}) -+7, 
True which does not contradict our intuitive understanding of the program. [] 

To conclude this Section, we give a type preservation result. 

T h e o r e m  2. ( T y p e  p r e s e r v a t i o n )  Let ~P = ( Z , C, Tl ) be a well-typed strongly 
regular program. Let V be an environment. I f  e -+-p e I and e E Exprr~  (V)  then 

T e I E Expr~• (V).  �9 

The last Theorem fails in general if non-regular equations or collapsing regular 
equations are allowed in C: 

Example 4. Let us consider the signature ~ from Example 1 and the empty en- 
vironment Y. Assuming the non-regular axiom Sue(x) ~ Sue(y), we obtain 
Sue(Zero) -07, Sue(True),  where Sue(Zero) ~ Termg~t(V ) but Sue(True) r 
TermY~t(V).  Taking the collapsing regular axiom x ~ Sue(x),  we get True -+7, 

Bool  Suc( True) where True E Term~ (Y)  but Suc( True) ~ Boot ' Term z (V).  [] 

5 M o d e l - t h e o r e t i c  S e m a n t i c s  

In this section we will present a model-theoretic semantics, showing also its re- 
lation t~o the rewriting calculi from Section 4. First, we recall some basic notions 
from domain theory [20]. 

A poset with bottom .1_ is any set S partially ordered by E, with least element 
3_. Def(S) denotes the set of all maximal elements u E S, also called totally 
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defined. Assume X C_ S. X is a directed set ifffor all u, v E X there exists w E X 
s.t. u, v ___ w. X is a cone iff .I_E X and X is downwards closed w.r.t. E_. X is an 
ideal iff X is a directed cone. We write C(S) and Z(S) for the sets of cones and 
ideals of S, respectively. Z(S) ordered by set inclusion C is a poset with bot tom 
{_L}, called the ideal completion of S. Mapping each u E S into the principal 
ideal (u) = {v E SIv u_ u} gives an order preserving embedding. It is known (see 
e.g. [16]) that Z(S) is the least cpo D s.t. S can be embedded into D. Due to 
these results, our semantic constructions below could be reformulated in terms of 
Scott domains [20]. In particular, totally defined elements u E Def(S) correspond 
to finite and maximal elements (u) in the ideal completion. 

As in [7], to represent non-deterministic lazy functions we use models with 
posets as carriers, interpreting function symbols as monotonic mappings from 
elements to cones. The elements of the poset are viewed as finite approximations 
of possibly infinite values. For given posets D and E, we define the set of all 
non-deterministic functions from D to E as 

[D -+rid E] = { f  : D --+ C(E) I Vu, u' E D:  (u E D U t ==~ f ( u )  C f ( u ' ) ) }  

and the set of all deterministic functions from D to E as 

[D--+d E] = { f  E [D--%d E]I Vu E D:  f (u)  E Z(E)} 

Note that, a deterministic function f computes a directed set of partial values; 
hence, after performing an ideal completion, such functions become continuous 
mappings between algebraic cpos. Notice also, that a non-deterministic function 
f can be extended to a monotonic mapping f* : C(D) -4 C(E) defined as f* (C) = 
Uoec f(c).  Abusing of notation, we will identify f with its extension f*.  

We are now prepared to introduce our algebras, combining ideas from [7, 18]. 

D e f i n i t i o n 3 .  ( P o l y m o r p h i c a l l y  T y p e d  a lgeb ra s )  Let Z be a polymorphic 
signature. A Polymorphically Typed algebra (PT-algebra) .4 has the following 

structure: 
A = (DA,TA, :A ,{c  A [ C E TC},{c A I c :Tr--~ r E DC-L},{f A [ f :~"'~ r.  E FS}) 

where: 
(1) D "a (data universe) is a poset with partial order ~.a and bot tom element 

.l_-a and T A (type universe) is a set; 
(2) :'aC D A * T  A is a binary relation such that for all ~ E T-a, the extension of 

in-.A, defined as: s = {u E D "a I u :'~ ~} is a cone in D'a; 
(3) For each C E TC n, C A : (T-a) ~ -~ T-a (simply C A E T "a if n = 0); 
(4) for all c:  ( q , . . . ,  r~) ~ ~" E DC• c "a E[(D 'a )  n -'+d D "a] satisfies: For a!l 

ui E D-a, there exists v E D A such that c 'a (u l , . . . , u~)  = (v). Moreover, tf 

ui E Def(D-a) then v E Def(D-a); 
(5) for all f :  ( r l , . . . ,  r~)  ~ 7-' E FS, f-a E [(D-a) m -+,~d D'a] �9 [] 

Note that as in [18], :-a relates the elements of D-a (carrier for data) to the 
elements of T ~a (carrier for types). Note also that the preservation of finite and 
maximal elements in the ideal completion of D A is ensured in item (4). 

In order to interpret expressions in an algebra .4 we use valuations ~ --- (It, rl), 
where p : TVar --+ T A is a type valuation and r/: DVar -+ D "a is a data valuation. 

is called totally defined iff r/(x) E Def(D-a), for all x E DVar; and ~ is called 
allowed for a given t E Term~_(DVar) iff ~7(x) E Def(DA), for all x E dvar(t) 
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s.t. x has more  than one occurrence in t. Val(A) denotes the set of  all valuat ions 
over .A. 

For a given ~ = (#, 0) E Val(A), type denotations [7-~'a~ = [v~'4# E T ~t and 
expression denotations [e]~t~ = [e]~tT/E C(D "4) are defined recursively: 

[ ~ F .  = . (~) ;  
[IV(r, . . . .  , r ,)]-ap = C-a([r,]-ap . . . .  , [r,~]-ap), C E TC", r, E Expr~• 

- I[--L]~'ar/= { l  "a} and [x]-aTI = <r/(x)), for all x E DVar; 
[h(~, . . . .  , ~ ) ] %  = h ~ ( [ c , ] %  . . . . .  [ c 4 % ) ,  for ~U h :  ( r , , . . . ,  rn) ~ ~ E DCUFS, 
el E Exprs• (DVar ). 

As in [7], it is easy to prove that H ' a q  is a principal ideal (u) for each t e rm 
t E Terms_~(DVar). Moreover, u E Def(D ~t) if 7/is total ly defined. 

We are par t icular ly  interested in those PT-a lgebras  that  are well-behaved 
w.r.t ,  types.  We say that algebra A is well-typed iff for all h : ( v l , . . . ,  v,~) --+ r0 E 
DC• W FS we have hA(g'a([q]'ap),...,SA([7"I~Ap)) C ~A(~7"0~A~t ) for every 
type  valuat ion ~. Also, for given ~ ~.4(p, 7/) E Val(.A), we say that  ~ is well-typed 
w.r. t  an environment  V iff r/(x) E g ([7"]~t#) for every x : r E V. Reasoning by 
s t ructural  induction,  we can prove that expression denotat ions behave as expected 
w.r.t ,  well- typed algebras and valuations: 

T h e o r e m 4 .  Let V be an environment. Let A be a well-typed PT-algebra and 
= (p,y) E Val(A) well-typed w.r . t .V .  For all e E Exprrs.(V), [e]'4q C 

s ~ ( [ ~ P , ) .  �9 

Next,  we define the notion of model. Note that  reduc t ion /approx imat ion  is 
in terpreted as inclusion, while joinabil i ty is interpreted as existence of  a c o m m o n  
maximal  approximat ion.  

D e f i n i t i o n S .  ( M o d e l s  o f  a p r o g r a m )  Let .A be a PT-a lgebra .  

(i) Let  ~ = (#, 77) be a valuation over ,4. (M, t/) ~ e N e' iff lie]an gl [[e'~ar/M 
Def(D "4) # O. And (,4, rl) ~ e --+ e' iff [[e']]~tr/C_C_ [[e]]~t~/. 

(ii) .A satisfies a defining rule l -+ r ~ C iff every ~ = (p, r/) E Val(A) such that  
(A, ~) ~ C verifies that (A, ~/) ~ l -+ r. 

(iii) .4 satisfies an equation s ~ t i fffor every ~ = (/1, r/) E Val(A): [s]'4~ D_ [t]~] 
if ~ is allowed for s and [ t~ t~  _D ls]]'~rl if ~ is allowed for t. 

(iv) Let  P = (~ ,  C, T~) be a p rog ram. .4  is a model of  P (A ~ P )  iff .A satisfies 
every defining rule in T~ and every equation in C. D 

The  rest of  the section is devoted to the construction of  free te rm models,  
which allow to prove soundness and completeness of the rewriting calculi f rom 
Sect. 4. 

D e f i n i t i o n 6 .  ( F r e e  t e r m  m o d e l s )  Given a p rogram 7 ) = (~ ,C,7~)  and an 
envi ronment  V, we build the term model  A4p(V)  as follows: 

�9 Data universe: Let X = {x C DVar I x occurs in V}. Then the data uni- 
verse of M ~ . ( v )  is Term~(X)/.~. For a n t  C Term~(X), [t] denotes the 
equivalence class {t' E Terms . (X)  It "~c t '};  

�9 Type universe: Let A = {~r E TVar I(~ occurs in V} and TTc(A) = {r  E 
TTc(  TVar) l tvar(r) C_ A}. Then the type universe of.A4~,(V) is TTc(A); 

�9 For all [ t ] E  Termx~_(X)/~c , r E Tz, c(A), we define [t] :a4~,(v) r i f f t  E 
Termed(V). 
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�9 For all C E TC ~ and r~,... ,r,~ E TTc(A): C~7'(v)(rt . . . .  ,r,~) = C(r~, . . . ,  r,~); 
�9 For all c :  ( ~ , . . . , ~ )  -~ ~ e DC, [t4 e Terms~(X)/,~: 

c ~ ' ( v ) ( [ q ] , . . . ,  Eta]) = ([e(q,  . . . ,  t , ) ] )  

�9 For all f :  ( q , . . . , r ~ )  --+ "c E FS, [ti] E T e r m s •  

f ~ ' ( v ) ( [ t ~ ] , . . . ,  [tn])= {[t] E Term2~.(X)/~c I f ( t ~ , . . . , t ~ )  --+7, t )  

�9 -k .~ , (v)= [-k] is the bottom element, whereas the partial order is defined as 
follows: for all [s], [t] E T e r m s . ( X ) / ~ c ,  [s] ___~,(v) [t] iff s ~c t. [ ]  

It can be proved that for any program 7 ) = (S, g, Tr s.t. g is strongly regular 
and well-typed, AdT,(V) is a PT-algebra. Moreover, if all rules in Tr are regular 
and well-typed then .AAT,(V) is a well-typed PT-algebra. 

All valuations over the term algebra AA~,(V) can be represented by means 
of substitutions. Any substitution p = (0,5) s.t. 5 : DVar --+ T e r m ~ •  and 
0 : TVar  --+ TTc (A) ,  represents the valuation [p] = (0, [5]), where [5](x) = 
[5(x)]. It is easy to check that [ r ] ~ ( v ) 0  = 7-0 for all 7" E T T c ( T V a r ) ,  and 
[[t]]~(v)[5] = (ITS]) for all t E Term~x(DVar) .  Moreover, the relationship 
between semantic validity in Jtdp(V) and GORC-derivability (which allows to 
prove the adequateness theorem below) can be characterized as follows: 

L e m m a  7. ( C h a r a c t e r i z a t i o n  l e m m a )  Let 7 9 = ( S ,  C, Tr be a program where 
C is strongly regular and well-typed. Consider [p] = (0, [5]) E VaI(AAT~(V)), 
represented by a substitution p = (0,5). Then for all e, a, b E Exprs •  
t E Term~•  

[t] E [ e ~ ( v ) [ 5 ]  iff e5 -+~ t and (A4~(V) ,  [5]) ~ a t~ b iff a5 N~ b& �9 

T h e o r e m  8. ( A d e q u a t e n e s s  o f  A4p(V)) Let 79 --- ( Z , C, Tr ) be a program such 
that C is strongly regular and well-typed. Then: 

( i )  M ~ ( V )  # 7). 
(2) For any ~ = e -+ t or ~ = e N e', where e,e ~ E E x p r ~ •  and t E 

Terms•  ( X )  , the following statements are equivalent: 
(2.1) ~ is derivable in GORC (or equivalently, in BRC) ;  
(2.2) (A, U) # ~, for all PT-algebra `4 such that .4 ~ 79 and for all totally 

defined ~ = (#, ~l) E VaI(A); 
(2.3) (AAT,(V), [id]) ~ ~, where id is the identity partial data substitution 

defined as id(x) = [x], for all x E X .  " 

To conclude, we show that ,~47,(V) admits a categorical characterization as 
a free object. To this end, suitable morphisms are needed. 

D e f i n i t i o n 9 .  ( H o m o m o r p h i s m )  Let `4 and/3 be two PT-algebras. A homo- 
morphism h : .4 -+ I3 is any pair of mappings (ho, hi), where h0 : T ~t --+ T s and 
h i e  [/)at "-+d D s] which satisfies the following conditions: 

�9 For all C E TC" ,  el,...gn ~ T'4, h0(C 'A(  e l , - "  . en) )  ~-- C S ( h 0 ( e l ) ,  . . .  , h0(er~)); 
| For all u E D "a, there is v E D s such that ht(u) = (v); 
�9 hi is strict, i.e. hl(-k A) = (-ks); 
�9 For all e :e -~  ~ e D C ,  u~ ~ D ~ :  h~ ( e ~ ( ~ , . . . ,  u , ) )  = e s ( h ~ ( ~ l ) , . . . ,  h~(~,o)); 
�9 F o r a l l f : ' ~ - - + r e F S ,  u~ED~:h~( f '~ (u~ ,  , u , ~ ) ) C _ f S ( h l ( U l ) , ' " , h l ( u n ) ) "  
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Morover, h is called a well-typed homomorphism iff hl(g~(e)) c_ gB(ho(e)) 
for all ~ �9 T ~ . [] 

PT-algebras of signature L' are the objects of a category PTAlg~ whose ar- 
rows are the homomorphisms from Definition 9. The models of any given program 
79 = (Z, C, 7"r determine a full subcategory ModT, of PTAlg Z. We can prove: 

T h e o r e m l 0 .  (AdT,(V) is free) Let 7 9 = (Z,C,Tr be a program s.t. C is 
strongly regular and well-typed. AA~,(V) is freely generated by V in Mode,, that 
is, given any A ~ ? 9 and any totally defined ~ = (#, y) �9 Val(.A), there ex- 
ists a unique homomorphism h : Mp(V) --+ A extending ~, i.e. such that 
ho(a) = It(a), for all ~ �9 d and hi(Ix]) = (r](x)), for all x �9 X .  Moreover, 
i f  .A and ~ are well-typed then h is a well-typed homomorphism. �9 

6 C o n c l u s i o n s  and  Future  W o r k  

We have presented a semantic framework for functional logic programming with 
algebraic polymorphic datatypes, whose data constructors can be governed by 
a specified set of equational axioms. Since equational logic does not reflect the 
expected behaviour of lazy functions, we have given rewriting calculi and models 
which provide an adequate declarative semantics for our programs. This is shown 
by the existence of free models for programs (Theorem 10), the adequateness of 
the rewriting calculi w.r.t, models (Theorem 8), and type preservation results 
(Theorems 2, 4 and 10). 

Related works dealing with non-free data constructors in declarative pro- 
gramming languages include [13, 4, 8, 15]. The main novelty here has been to 
include polymorphic data types and lazy (possibly non-deterministic) defined 
functions. The combination of algebraic constructors and lazy defined functions 
precludes a direct use of equational reasoning to deal with the equational theor- 
ies for constructors. This problem has been discussed and solved in sections 3 
and 4. Related work includes also some approaches to functional logic program- 
ming with polymorphic types such as [9, 1], using free constructors and more 
complicated algebras with one carrier for each type and multiple interpretations 
for polymorphic function symbols. The language in [1] is more expressive in an 
orthogonal direction, since it supports inclusion polymorphism. 

The development of a constructor-based lazy narrowing calculus for goal solv- 
ing has been left outside the scope of this paper. It is an important problem for 
future research, whose solution will presumably combine known techniques for 
E-unification [14, 2] with known lazy narrowing calculi for functional logic pro- 
gramming [7]. Another open problem is to obtain more general type preservation 
results, so that collapsing regular axioms for constructors and extra variables in 
the right-hand sides of defining rules can be allowed in programs. Last but not 
least, we are interested in enriching our framework with constraints, coming from 
a constraint system given as a suitable extension of the equational axioms C for 
constructors. For instance, if C specifies constructors for sets or multisets, the 
constraint system shcrtdd provide constraints for disequality, membership, etc~ 
In fact, set constraints are already in use,with various semantics, in different 
approaches to programming and program analysis [4, 5, 11]. 

A c k n o w l e d g m e n t s :  We are indebted to Ana Gil-Luezas for her wise advices 
and comments to the development of this work. 
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