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Abs t r ac t .  In this paper we investigate the problem of "partializing" 
Stone spaces by "Sequence of Finite Posets" (SFP) domains. More specif- 
ically, we introduce a suitable subcategory SFP "~ of SFP which is nat- 
urally related to the special category of Stone spaces 2-Stone by the 
functor MAX, which associates to each object of SFP "~ the space of its 
maximal elements. The category SFP m is closed under limits as well 
as many domain constructors, such as lifting, sum, product and Plotkin 
powerdomain. The functor MAX preserves limits and commutes with 
these constructors. Thus, SFP domains which "partialize" solutions of a 
vast class of domain equations in 2-Stone, can be obtained by solving 
the corresponding equations in SFP m. Furthermore, we compare two 
classical partializations of the space of Milner's Synchronization Trees 
using SFP domains (see [3], [15]). Using the notion of "rigid" embedding 
projection pair, we show that the two domains are not isomorphic, thus 
providing a negative answer to an open problem raised in [15]. 

Introduction 

The problem of finding an appropriate  "partialization" of a space of total ele- 
ments,  arises in several areas of Mathematics  and Computer  Science when deal- 
ing with computat ional  approximations. A point can be taken as total  if it can 
be separated from all the others points of the space by an intrinsic property. A 
"partialization" of a space of total  elements can be viewed as a homeomorphic 
embedding of the space onto the maximal  elements of a domain. Part ial  elements 
can then be seen as the representatives of possibly intensional properties of the 

original space. 
Following the pioneering work of Scott, domains of approximations (essen- 

tially countably based continuous partial  orders) have been used to s tudy com- 
putabil i ty on real numbers and on other metric spaces (see e.g. [19, 14, 10, 12]). 

In this paper  we investigate the "partialization" of 2-Stone spaces by SFP 
domains,  first considered by Abramsky (see [1, 2, 3]). Both kinds of spaces play a 
fundamental  r61e in the denotational semantics of concurrency. The importance 
of SFP domains is unquestionable (see [16]). The relevance of 2-Stone spaces, i.e. 

* Partially supported by EC HCM project Lambda Calcul Typ4, CHRX-CT92.0046. 
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countably based, totally disconnected compact Hausdorff spaces, arises from the 
fact t h a t  compact ultrametric spaces, a category of spaces widely used in metric 
semantics (see [8]), are 2-Stone spaces. 

A natural  partialization of a 2-Stone space IX, T/ by a Scott domain can 
be immediately obtained as the ideal completion of the collection t(~ne(X ) 
of non-empty compact open subsets of X,  ordered by reverse inclusion D x = 
Idl(K~ne(X),  D). Such domains are extensional in the sense that  different partial 
elements approximate different sets of maximal elements. However, this class of 
domains is not closed under significant domain constructors, such as lifting and 
Plotkin powerdomain, in that  such constructors add points that  are meaningless 
w.r.t, the topology of the induced space. 

Another extensional partialization can be obtained by associating to a 2- 
Stone space X,  the tree D x of closed balls of a metrization of X, ordered by 
reverse inclusion (as in [6, 7, 12]). In the setting of compact ultrametric spaces 
and non-distance increasing functions, domain constructors can be defined on 
these trees inducing the corresponding metric constructors on the space of max- 
imal elements. This solution, however, is not completely satisfactory since the 
constructors are quite "ad hoc". 

In this paper we explore the approach of [1] and consider, even non exten- 
sional, SFP domains. We exploit the fact that  both 2-Stone spaces and SFP 
domains share the finitary property of being limits of sequences of finite discrete 
structures, namely finite discrete spaces and finite partial orders, respectively. 
In fact, at the level of finite structures, we have that: 
i) partial orders are closed under many domain constructors, i.e. lifting (.)• 
separated sum +, product • and Plotkin powerdomain 7~pz; 
ii) the subspace of maximal elements of a partial order is a discrete space, and 
every discrete space can be viewed as such a subspace, for suitable partial orders; 
iii) the natural  functor MAX commutes in an obvious way with the domain con- 
structors in i). 

Thus, at the level of finite structures one can define compositionally natural  par- 
tializations of discrete spaces. In this paper we generalize to the w-limit what 
happens at finite level. In particular we introduce a suitable subcategory S F P  m 
of S F P  ep closed under limits as well as the above mentioned domain construc- 
tors. The subspace of maximal elements of an object in S F P  m is a 2-Stone space, 
and every 2-Stone space can be viewed as such a subspace, for a suitable object 
in S F P  m. Since the functor MAX from S F P  m to 2 - S t o n e  is w-continuous, we 
can define SFP domains which "partialize" solutions of a vast class of domain 
equations in 2 -S tone ,  by solving the corresponding equations in S F P  m. 

A partialization which has been extensively studied in the li terature by 
Abramsky [3] and Mislove, Moss, Oles [15] is that  of Milner's Synchronization 
Trees, or equivalently the closure of the space of hereditarily finite hypersets. 
This space is homeomorphic to the hyperuniverse A/'~ of [13] and it appears 
quite frequently under different mathematical perspectives, e.g. as the 2-Cantor 
space. In [151 the question was raised as to whether the two partializations given 
in [3] and [15] are isomorphic. 
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An immediate application of our results shows that  the solutions of the two 
domain equations in S F P  ep introduced by Abramsky (see [2]) and Mislove et al. 
(see [15]) have isomorphic maximal spaces. Using the notion of rigid embedding- 
projection pair we give a negative answer to the open problem raised in [15]. 
The technique based on rigid embedding-projection pairs is rather promising in 
the analysis of the fine structure of domains. Using the above results, we can 
show furthermore that  there is a plethora of non-isomorphic solutions of reflexive 
domain equations having the hyperuniverse Af~ as space of total elements. It is 
a matter  of further investigation which of these (if any) is the most appropriate 
partialization of the universe of hypersets. 

Throughout the paper we use standard notation and basic facts of Domain 
Theory and Topology (see [17, 11]). In Section 1 we give the basic definitions 
and we recall useful facts about SFP domains and Stone spaces. In Section 2 
we discuss extensional partializations. In Section 3 we introduce the category 
S F P  TM and show that  it is closed under various domain constructors. In Section 
4 we relate 2-Stone spaces to SFP m domains using the functor MAX. In Section 
5 we discuss partialization of hyperuniverses. Finally in Section 6 we show that  
the results of sections 3-4 cannot be extended to function space constructors 
and that  the compactness condition is necessary. For lack of space the proofs are 
omitted from this extended abstract. They appear in detail in [5]. 

This paper grew out from some initial results presented by the authors at the 
1994 meeting in Rennes of the EEC project MASK (Mathematical Structures 
for Concurrency). The authors are grateful to S. Abramsky, P. Di Gianantonio, 
M. Lenisa and to all MASK members for useful comments. 

1 S t o n e  S p a c e s  a n d  S F P  D o m a i n s  

We start by recalling definitions and basic facts about Stone spaces and SFP's 
domains (see [17], [11] for more details). Both kinds of objects are finitary in the 
sense that  they can be obtained as limits of sequences of finite objects in the 

corresponding categories. 

D e f i n i t i o n  1. A 2-Stone space is a compact topological space with a countable 

basis of clopen sets. 

P r o p o s i t i o n  2. Let (X, w) be a topological space. The following are equivalent: 

1. (X,  ~-} is a 2-Stone space; 
2. (X ,T)  = lim+-((Xn,~-n),fn) (Xn finite, Tn discrete topology); 
3. (X,  ~-) is compact and ultrametrizable with d : X x X -+ {0} U {2-n}n. 

Let Top be the category of topological spaces and continuous functions. We 
denote with 2 -S tone  the full subcategory of Top consisting of 2-Stone spaces. 

Given two cpo's D and E, an embedding-projection pair (ep-pair) from D to 
E is any pair of continuous functions i : D --+ E, j : E -+ D such that  i o j  E IdE 

and j o i ~ Ido. 
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We denote by C P O  ep the category of CPO's  and embedding-projection pairs. 
Let (Dn,Pn> be a sequence in C P O  ep and let D be its limit. For all n we denote 
with in and jn the components of the ep-pair Pn and with "Yn = (an, fin} the 
canonical ep-pair from Dn into the limit. 

D e f i n i t i o n  3. A Sequence of Finite Posets (SFP) domain is a domain which is 
isomorphic to the direct limit of a directed sequence of finite CPO's  in C P O  ep. 

We denote by SFP ep the full subcategory of C P O  ep consisting of SFP's. 

Let X be a subset of the collection K(D)  of compact elements of D and let 
L/(X) denote the set of minimal upper bounds of X.  L/(X) is said to be complete 
if for each upper bound y of X there exists x �9 L/(X) such that  x C y. Finally 
U*(X) denotes the smallest set containing X and closed under/g.  

P r o p o s i t i o n 4 .  Let (D, E) be a partial order. Then D is an SFP if and only if 
D is an w-algebraic CPO and whenever X is a finite set of finite elements of D, 
then Lt(X) is a complete finite set of upper bounds of X and IJ*(X) is finite. 

If D satisfies only the first two of the three conditions above it is called a 2/3 
SFP, or equivalently a coherent w-algebraic domain. 

P r o p o s i t i o n 5 .  Let D = l im~(Dn,pn)  with Dn SFP's and pn ep-pairs. Then: 
1. u C_fin (K(D))  r 3n. SUn C_fin K(Dn)  u = an(Un); 
2. vn. Vnn c K(Dn).  = 

2 E x t e n s i o n a l  P a r t i a l i z a t i o n s  

Given a 2-Stone space <X, r)  we say that  a SFP domain D induces IX, 7-) if 
(Max(D), 3) _~ (X, 7), where S denotes the topology induced by Scott topology 
on Max(D). In general, one can find infinitely many SFP domains which induce 
a given 2-Stone space (X,~-); consider, for instance, all SFP's  with a top ele- 
ment. The finite elements of any such domain, however, cannot be interpreted, 
in general, as the open sets (properties) of the original space. In order to have 
"partializations" of 2-Stone spaces where finite elements represent properties of 
the original space, it is natural  to restrict attention to extensional domains. 

D e f i n i t i o n  6. An SFP domain D is extensional if for each finite element d �9 D 

d =  A{z I z �9 Max(D)n td}. 

Notice that  even if we restrict attention just to extensional SFP domains, 
still we cannot find a unique domain which induces a given 2-Stone space on 
its subspace of maximal elements. Consider, for instance, a flat domain and the 
meet-semiIattice generated by it. 

We discuss briefly two possible canonical constructions for embedding home- 
omorphicaIly a 2-Stone space X into Max(D) for some domain D. 
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The first construction is suggested by Stone duality [18] and it is obtained 
by considering the collection K~ne(X) of non-empty compact open subsets of 
X,  ordered by reverse inclusion (Kf2ne(X), D) and then its ideal completion, 
D1 x = Idl(K$2ne(X), 2). or equivalently the collection of non-empty compact 
subsets (Kne(X),  _D). Clearly D X is an extensional w-algebraic Scott domain 
and (Max(D~) ,S)  -- X.  Moreover D ~  is "maximal", in the sense that  any 
other extensional SFP domain that  induces X can be embedded by a continuous 
injective function into D x . In fact SFP domains are w-algebraic and each clopen 
is determined by a finite element. However, extensionality is not preserved by 
important  domain constructors such as 7)Ft. To see this it is enough to apply 
PPl to the extensional finite SFP domain D = {a, b}• 

Alternative extensional partializations are suggested by [19, 6, 7, 12]. They 
are based on the fact that  each 2-Stone space X is metrizable with an ultrametric 
d : X • X ~ {0} U {2-n}n. Hence one can consider D X = Idl({/~(x, 2 -n)  I n E 
iW}, _D). D x is an w-algebraic CPO where incomparable elements have no upper 
bounds, i.e. D X is a (finitely branching) tree. Maximal elements of D x can be 
identified with maximal chains in ({/~(x, 2 -n )  : n E ZVV}, _D) and the function 
f : (Max(DX),$)  -+ (X, Y2(X)) mapping a chain (B~)~ to the sole point in 
Nn B~ is a homeomorphism. This partialization contains only elements corre- 
sponding to a system of disjoint clopen sets. In [6, 7] it is shown that  such trees 
(of formal balls), and level preserving functions, can be turned into a category 
B T r e e ,  which is equivalent to the cartesian closed category K U M  of compact 
ul trametric spaces and non expansive functions. The equivalence is established 
by a functor tha t  associates to each tree the space of maximal elements with the 
induced topology. In B T r e e  we can define domain constructors, such as lifting, 
product ,  sum, function space and powerdomain, which induce on the space of 
maximal elements the corresponding metric constructors. This partialization is 
not completely satisfactory since it requires to restrict oneself to particular con- 
tinuous functions (i.e. non expansive functions) and to consider constructors on 

trees which are quite "ad hoc". 

3 T h e  C a t e g o r y  S F P  m 

In view of the results of the previous section, in order to have a well behaved 
class of partializations, we are led to drop the extensionality condition and to 

focus on a wider class of SFP domains. 
In this section we define a subcategory S F P  m of S F P  ~p such that  every 

object in S F P  m induces a 2-Stone space. Constructors over S F P  "~ are defined 
in the s tandard way. We establish a connection between these constructors and 
the corresponding ones over 2 -S tone ,  using the functor Max. Then, a domain 
equation in 2 - S t o n e  can be translated into a domain equation in S F P  m, in such 
a way that  the solution of the latter is a partialization of the former. 

We start  by pointing out the "folklore" result that,  if D is a 2/3 SFP then 
the Scott topology 8 and the Lawson topology t: coincide on Max(D). Hence: 
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P r o p o s i t i o n  7 ( M a x i m a l  e l e m e n t s  o f  an  S F P ) .  Let (D, E)  be a 2/3 SFP.  
Then (Max(D),$)  is a second countable, totally disconnected space. 

Not all SFP domains induce a compact space on the subspace of maximal 
elements. Consider, for instance, ZW• A natural and sufficient, but  not necessary, 
condition on D for compactness to hold is that  there exist a direct sequence 
with limit D, where projections preserve maximal elements. In order to single 
out a suitable category of such SFP domains (see Definition 12), we need some 
preliminary results. 

D e f i n i t i o n  8 ( M - p a i r ) .  Let D and E be SFP's. An ep-pair p = (i, j )  : D -+ E 
is called maximals  preserving pair, or M-pair, if for all x �9 Max(E), j ( x )  �9 
Max(D) (i.e. j(Max(E)) C Max(D)). 

Notice that  if p = ( i , j )  : D --~ E is an M-pair then j (Max(E))  = Max(D). 
In fact, by surjectivity of j ,  for all x E Max(D) there exists y E E such that  
j ( y )  = x. Hence if y' �9 Max(l"y) we have j ( y ' )  = x. Moreover, composition of M- 
pairs is an M-pair. We denote by l im_~(Dn,pn)  the limit of a directed sequence 
of finite CPO's and M-pairs. 

L e m m a 9 .  Let  D = l imm (D~,pn)n .  Then given x = (x~)n E D 

x is maximal  in D iff j n ( x )  = x~ is maximal  in Dn for  all n. 

Continuity in Lawson topology is a stronger notion than continuity in Scott 
topology, but one can easily check that  projections are also Lawson continuous. 
This simple remark is useful in proving the following: 

L e m m a l 0 .  Let  D = l i m m ( D n , p n ) ~ .  Then Max(D) is Lawson closed, hence 
compact. 

T h e o r e m  11. Let D = l i m ~  {Dn,p~)n .  Then (Max(D),$)  is a 2-Stone space. 

Finally we can introduce the category of SFP domains we shall work with: 

D e f i n i t i o n  12 ( C a t e g o r y  S F p m ) .  The category S F P  m has as objects those 
SFP's  that  are limit of directed sequences of finite CPO's and M-pairs. Mor- 
phisms are M-pairs, the identity and composition are standard. 

We can give also an intrinsic characterization of S F P  m objects. This will be 
instrumental in proving some interesting properties of S F P  m such as the closure 
with respect to direct limits. 

D e f i n i t i o n  13 ( M - c o n d i t i o n ) .  We say that  an SFP (D, E) satisfies the M- 
condition if Vu C fi  ~ K ( D ) . 3 v  C_fi~ K ( D )  such that: 
i) u C v ,  

ii) Max(U*(v)) U s Max(D), where E s is Smyth preorder (i.e. u [-s v iff Vy E 
v .~x  e u .x  U y). - - 



484 

In order to show that  S F P  m objects are exactly those SFP's which satisfy 
the M-condition we proceed as follows. First we prove that  the limit, taken in 
S F P  ep, of a sequence (Dn,Pn) in S F P  m is a limit in S F P  m. Then we show that  
the M-condition is preserved under limits. Using these facts and that  every finite 
CPO satisfies the M-condition, we can easily prove the desired result. 

L e m m a  14. Let D = lim-+(D~,pn), with (On,p,~) directed sequence in S F P  m. 
Then x = (Xn)n �9 Max(D) iff x,~ �9 Max(Dn) for all n. 

L e m m a  15. Let D = l im~(On,pn) ,  with (Dn,Pn) directed sequence in S F P  m. 
If  each D~ satisfies the M-condition then also D satisfies M-condition. 

T h e o r e m  16 ( I n t e r n a l  c h a r a c t e r i z a t i o n  o f  S F P  m o b j e c t s ) .  Let (D, E_) be 
an SFP. Then D is an S F P  m object iff D satisfies the M-condition. 

C o r o l l a r y  17. The category S F P  m is closed under direct limits. 

Notice that  given a 2-Stone space X the domains D x and D X defined in 
section 1 are both SFP objects which satisfy the the M-condition. As we men- 
tioned earlier, however, the category S F P  m does not contain all SFP's that  
induce 2-Stone spaces, i.e. the M-condition is only sufficient, but  not necessary 
for the compactness of the induced space. Consider for instance the functor +* 
over S F P  ep defined as follows: 

D +* E _def ({(d, 0) I d e D} U {(e, 1) I e �9 E} U { l ,  *}, E*), where for each 
x, y ~ *, x _E* y if and only if x ED+E y and (-LD, 0) E* *, (-LE, 1) E* *. 

Given two strict functions f : D ~ D' ,  g : E ~ E' ,  f +* g coincides with 
f + g on all the elements different from * and it maps *D+*E to *D'+*E'. The 
action of +* over M-pairs is (i, j )  +* (h, k} = (i +* h, j +* k). 

It  is easy to prove that  the initial solution of the domain equation X "~ X + * X  
is not in S F P  m but that  the space of its maximal elements is 2-Stone. 

We show now that  several domain constructors over S F P  ep, namely lifting 
(.)• separated sum +, product  x and Plotkin powerdomain ~Op1, are functorial 
over S F P  m. The coalesced sum @ is functorial only on S F P ~ ,  the subcategory of 
S F P  m consisting of non-trivial SFP domains. From now on it will be understood 
that  the application of the @ functor is confined to (objects in) S F P ~ .  The  
function space constructor is very problematic, see Section 6 for a brief discussion 

of this issue. 
We shall use the characterization of Plotkin powerdomain 7~pt(D) as the 

set {X C_ D ] X non-empty, convex and Lawson closed}, with the Egli-Milner 
ordering. Con(X) denotes the least convex set that  contains X.  Cl denotes the 
closure operator  in Lawson topology. If f : D -+ E is a continuous function 
then JOPl(f) : PpI(D) --+ PPt(E) is defined as P p l ( f ) ( X )  = Con(Cl( f (X))) .  In 
particular if f is a projection then 7:)pt(f)(X) = f ( X ) .  In fact a projection is 
Lawson continuous, hence f ( X )  is closed. Moreover f ( X )  is convex. 

The next lemma gives a characterization of Max(T'pt (D)) for an S F P  m object 
D. It states that  only maximal elements of D play an essential role in forming 
maximal elements of the Plotkin powerdomain. It  will be used to show that  7)pz 
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is functorial on S F P  TM and corresponds, in a sense formalized in Section 4 to the 
constructor Pnco of 2 -S tone .  

L e m m a 1 8 .  Let D be an S F P  "~ object. Then Max(Ppz(D)) -- {X E Pp t (D)  I 
X C Max(D)}. 

Since each subset of Max(D) is dear ly  convex we have Max(7~pl (D)) = {X C 
Max(D) [ X Lawson closed}. 

L e m m a l 9 .  Let D , E ,  Di,E~(i = 1,2) be S F P  m objects and let p : D --+ E,  
pi : D~ -~ Ei be M-pairs. Then: 
1. p• : D• -~ E• 
2. Pt +P2 :D1 + D2 --+ E1 + E2; 
3. p ~ @ p 2 : D I | 1 7 4  (if]Dl[,[D21> l);  
3. Pl x P2 : D1 x D2 -+ El  • E2; 
5. Pet (P) : PPt (D) --+ 7)pt (E) are M-pairs. 

Notice tha t  if Dt  or D2 is a one-point CPO then Pl @ P2 can fail to be an 
M-pair. Hence, as remarked, ~ is not functorial on S F P  m. 

Closure of S F P  m with respect to all constructors defined above easily follows 
from a general result. 

L e m m a  20. Let F : (SFP~P) ~ --+ S F P  ~p be a locally continuous functor that 
preserves M-pairs. I f  D 1 , . . . , D ~  are S F P  TM objects then F ( D1 , . . .  ,D,~) is an 
S F P  m object. 

C o r o l l a r y  21. Let D, D1, D2 be S F P  m objects. Then D• D1 + D2, D1 ~ D2, 
D1 • D2 and 7apt (D) are S F P  m objects. 

C o r o l l a r y  22 ( D o m a i n  c o n s t r u c t o r s  in S F p m ) .  The constructors (.)2_, +, 
• and 7i)p1 are  functorial over S F P  m. The constuctor | is functorial over the 
category SFP~ n. 

4 R e l a t i o n  b e t w e e n  S F P  m and 2 -S tone  

In this section we relate the categories S F P  m and 2 -S tone .  First of all we show 
tha t  it is possible to define an w-continuous functor MAX : S F P  m --~ 2 -S tone .  
Then we prove that  the functor MAX is compositional with respect to the con- 
structors considered in the previous section, in the sense tha t  MAX(F(D))  _~ 
F(MAX(D)) ,  where F is the functor over 2 - S t o n e  corresponding to F.  In this 
way equations in 2 - S t o n e  and their solutions can be described by means of 
equations and solutions in S F P  m. 

D e f i n i t i o n  23. The contravariant functor MAX : S F P  m -~ 2 - S t o n e  is defined 
as follows. For each S F P  m object D, MAX(D) ---- (Max(D),S) .  For each M-pair  
p = ( i , j )  : D -+ E, MAX(p) = JlMax(E) : MAX(E) -~ MAX(D). 
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I t  is s traightforward to check that  MAX is well-defined and w-continuous: 

T h e o r e m  24. Let D = Iim_+ ( Dn, Pn), with (D~, Pn) a direct sequence in S F P  "~, 
or S F P ~ .  Then MAX(D) ~ lim~_(MAX(Dn), MAX(j~)). 

The correspondence between constructors in S F P  "~ and in 2 - S t o n e  is for- 
malized as follows: 

D e f i n i t i o n  25. Two functors F : (2 -S tone)  ~ -+ 2 - S t o n e  and G : (SFP '~ )  ~ -+ 
S F P  m are called associated ]unctors if there exists a natural  isomorphism ~] : 
F o  (MAX, . . . ,MAX) ~ MAXo G. 

We now show tha t  (.)• +,  x and 7)pt in S F P  m are associated to the cor- 
responding constructors Id (identity), 0 (disjoint union), x (product),  and P~co 
(hyperspace of non-empty compact  subsets) in 2 -S tone .  2 Moreover, in S F P ~ ,  
the constructor | is associated to U. 

L e m m a 2 6 .  Let D, D1 and D2 be S F P  m objects. Then 
1. MAX(DI + D2) '~ MAX(D1)OMAX(D2); 
2. MAX(D_L) "~ MAX(D); 
3. MAX(D] x D2) - MAX(D]) x MAX(D2); 
4. MAX(PpI(D)) "~ P~,co(MAX(D)); 
5. MAX(D~ | D2) -~ MAX(D1)@MAX(D2). 

T h e o r e m 2 7 .  The ]ollowing ]unctors on S F P  m and 2 - S t o n e  are associated: 
(.)• with Id, x with x, + with 0 and ~)Pl with "Pnco. Moreover @ over SFP~  n is 
associated to 0 over 2 - S t o n e .  Finally composition o] associated/unctors is the 
functor associated to the composition. 

5 D o m a i n  E q u a t i o n s  f o r  N o n  W e l l  F o u n d e d  S e t s  

In this section we apply the theory developed in the previous section to the s tudy 
of the initial solutions of two important  domain equations in S F P  m, namely: 

X ~ (2 | 7)pt(X• (Eql) 
X ~- 1 + Ppl (X) (Eq2) 

The initial solution D of (Eql) was introduced by Abramsky in [3] in order to 
partialize Milner's Synchronization Trees. The initial solution E of (Eq2) was 
introduced by Mislove Moss and Oles in [15] in order to partialize the closure of 
the space of hereditarily finite hypersets.  This space of hypersets is homeomor-  
phic in 2 - S t o n e  to Milner's Synchronization Trees, as can be seen, for instance, 
by an immediate  application of Theorem 27 and Theorem 24. In [15] the question 
was raised as to whether the two initial solutions in S F P  are isomorphic. 

2 The space 7)~co(X) is defined as the set {K C X t K non-empty and compact} 
endowed with the Vietoris topology, i.e. the topology having as subbasis: VA = 
{K ~ P~oo(X) I K C_ A} and ZA = {K ~ P~co(X) I K n A r ~} fo~ A e ~(X).  



487 

We give a negative answer to this open problem by showing that  D and E 
are non-isomorphic. Our proof is based on the notion of rigid ep-pair. 

Using the above results, we can show furthermore that  there is a plethora of 
non-isomorphic solutions of reflexive domain equations having the hyperuniverse 
Afro as space of total elements. In general, for any SFP domain Do such that  
U = MAX(D0) is a finite discrete space, the initial solutions of the equations 
X "~ (Do + ~:~pl(X)) and (if Do has at least two points) X --- (Do �9 :PpI(X• 
induce the hyperuniverse A/'oa(U) ([13]). 

The proof of the fact that  D and E are not isomorphic is done through an 
analysis of the fine structure of Plotkin powerdomain constructor. This allows 
to show that  D contains some points in a particular relation with the maximal 
elements of D which do not exist in E. 

We work in S F P  ep. First we introduce the notion of rigid ep-pair and list 
some of its most important  properties: 

D e f i n i t i o n  28 (R ig id  ep -pa i r ) .  Let D and E be SFP's. An ep-pair p = (i, j )  : 
D --+ E is called rigid if Yx E D and y E E with y ~ i(x), there exists x' E D 
such that  x' E x and i (x ' )  = y. 

P r o p o s i t i o n 2 9 .  Let D and E be SFP ' s  and let p = ( i , j )  : D --+ E be an ep- 
pair. Then the following s ta tements  are equivalent: 
1. p is rigid; 

2. for  all x E D and y E E ,  if  y K i (x)  then i o j ( y )  = y;  
3. for  all x,  x '  E D,  y E E with i (x)  E Y E i (x ' ) ,  there exists x"  E D such that 
x E x"  K x I and y = i ( x ' ) .  

L e m m a  30. Composit ion of rigid ep-pairs is a rigid ep-pair. 

L e m m a 3 1 .  Let  D,  D' ,  E ,  E '  be S F P ' s  and l e tp  = ( i , j )  : D -+ E ,  p' = ( i ' , j ' )  : 
D '  -+ E '  be rigid ep-pairs. Then 
1. p•  : Do. -+ E •  
2. p x p' : D x D '  --+ E x E ' ,  
3. p + p '  : D + D '  --+ E +  E ' ,  
4. p o p '  : D O D '  --+ E O E ' ,  
5. 7)v,(p) : Ppz(D) --+ 7-)pl(E) 
are rigid ep-pairs. 

L e m m a  32. Let  (Dn, Pn) be a directed sequence of SFP ' s  and ep-pairs. Let  D = 
lim_+ D n be the direct l imit  of the sequence. I f  every Pn is rigid then the canonical 
ep-pairs (an, 3n) : Dn --+ D are rigid. 

Finally we are able to state the property satisfied by D but not by E .  The 
two results below are proved using essentially the fact that  both D and E are 
limits of sequences with rigid ep-pairs. Hence the property is shown to hold (fail) 
in the limit by testing it at each finite level. 

L e m m a 3 3 .  There exists a, b E K(-D),  with a r- b such that 
1. V x E D .  a E x E b  ~ x = a  V x = b ,  
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2. V x E D . •  ~ x = •  V x = a ,  
3. Max($a) = Max(tb). 

L e m m a 3 4 .  There are no elements a,b E K ( E ) ,  with a ~- b such that 
1. Y x E E .  a E x r - b  =~ x = a  V x = b ;  
2. V x E E . •  ~ x=_l_ V x = a ;  
3. Max($a) = Max(?b). 

T h e o r e m  35. The initial solutions o / ( E q l )  and (Eq2) are not isomorphic. 

6 F i n a l  r e m a r k s  

1. Given an SFP domain D, the space MAX(D) is a space with a countable basis 
of clopen sets. One can ask whether Theorem 27 can be extended to S F P  ep and 
Q S t o n e ,  the category of totally disconnected separable Hausdorff spaces and 
continuous functions. The answer is negative, since there is no associated functor 
to Plotkin powerdomain constructor when we drop the compactness condition. 

.. Let D1 = ZW• D2 = P / •  + ZW• Both Max(D1) and Max(D2) coincide with 
~V endowed with the discrete topology. But Max(Ppi(D1)) is not homeomorphic 
to Max(Ppl(D2)) since the former has only one limit point, while the lat ter  has 
more than  one. In fact, in Max(Ppl(D1)) there is a unique infinite set, namely 
D1 itself, while Max(:Ppl(D2)) contains more than one infinite element. 

2. I t  would be interesting to extend the results of Section 4 so as to comprise also 
the function space constructor. Unfortunately 2 - S t o n e  is not cartesian closed, 
in tha t  the space of continuous functions between two 2-Stone spaces endowed 
with the compact  open topology is not compact,  in general. One could then t ry  
to look at least for the existence of some functor over 2 - S t o n e  associated to the 
function space constructor over S F P .  But even this is hopeless. 

First  of all maximal  functions between S F P  objects do not map maximal  
elements into maximal  elements, and thus they do not induce in a natural  way 
functions between the spaces of maximal  points. Consider, for instance, D = 
Nlazy, Bool = {tt, ff}• and take the continuous function parity : D --+ Bool 
(defined in the obvious way). It  is a maximal  element in [D --+ Bool], but  it does 
not map  the maximal  point w E D in a maximal  element of Bool. 

But  furthermore,  function spaces of S F P  objects, with the same space of 
maximal  elements, can be non-homeomorphic.  Consider, for instance, 

E = {a,b,-l-} U {ci ] i E N} ,  

ordered as follows: for all i, ci _ a, b, and for all x, • __ x. 
Then Max(Bool) and Max(E) are the same discrete space, but  the maximal  
elements of the function spaces Max([Bool --+ Bool]) and Max([Bool -~ E]) 
are different. In fact Max([Bool -+ Boo~) is a finite discrete space containing 
only four functions, while Max([Bool -+ E]) contains infinitely many functions. 
Namely, the functions f i(tt)  = a, fi(ffi = b, f i ( •  = ci, for i E F/,  and the 
constant  functions. All these functions are isolated points in a topological sense 
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(since they are finite elements in the SFP) and thus Max([Bool --+ El) is a infinite 
discrete space and hence it is not compact. This latter example shows also that 
S F P  m is not closed w.r.t the function space constructor. 
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