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1 I n t r o d u c t i o n  

TYPELAB is an experimental specification and verification environment. Its spec- 
ification language and its tool support provide assistance for a modular design 
and development methodology. 

The specification language of TYPELAB is based on a type theory, the Ex- 
tended Calculus of Constructions (ECC) [Luo94], which gives the system a sound 
semantic foundation. The pure type theory has been augmented by constructs 
partly to be found in algebraic specification formalisms [Wit86, Gog84, Bidgl] 
and other verification environments [OSR93, SJ94]. Particular language support 
is offered for axiomatizing theories and specifications, for stating theorems, for 
defining (even incomplete) morphisms between theories, for parameterization 
over theories, and for operators on theories. The novelty of the language lies in 
the combination of its features, which altogether yield a very expressive formal- 
ism, rather than in each aspect taken separately. Some aspects of the language 
will be illustrated in more detail in Section 2. 

TYPELAB comprises a proof assistant which is primarily thought to be used 
as an interactive proof checker. A sequent-style theorem prover has been devel- 
oped for automatically solving medium-sized problems in restricted fragments of 
the logic. The integration of a rewriting system for equality proofs is currently 
under way. During a specification development activity or during a proof, a 
knowledge base of previous program developments and proofs can be consulted. 
The knowledge base mainly consists of specifications and is structured by theory 
morphisms between specifications. The system support of TYPELAB is further 
described in Section 3. 

2 T h e  S p e c i f i c a t i o n  L a n g u a g e  o f  TYPELAB 

The TYPELAB specification language has properties that make it suitable both 
for small-scale and large-scale development and verification tasks. As an example 
of a typical specification, consider an incomplete definition of the theory of lists, 
as shown in Figure 1. 

* This research has partly been supported by the "Deu~scne" 1 Forschungsgemeinschaft" 
within the "Schwerpunktprogramm Deduktion" 
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idefn LIST := fun (E:ELEM) 

SPEC 

List:Type, 

% constructors 

nil: List, 

cons: E.T -> List -> List, 

selectors 

first: {l:List I not (i = nil)} -> E.T, 

rest: {l:List ~ not (i = nil)} -> List, 

application of constructors to selectors 

AXIOM first_selector: 

all(e:E.T,l:List) (first (cons e i)) = e, 

induction 

AXIOM list_ind: 

all(P:List ->Prop) 

(P nil) -> 
(all(e:E.T,l:List) ((P i) -> (P (cons e i)))) -> 

(all(l:List) (P i)), 

% constructor completeness 

THEOREM constr_compl: 
all(l:List) (I = nil) or (exists(e:E.T, ll:List) 1 = cons e 11) 

END-SPEC; 

Fig. 1. (Incomplete) Specification of Lists 

A specification, enclosed in SPEC . .  END-SPEC, consists of a sequence of 
declarations and definitions, which can logically be interpreted in the following 

way: 

- A specification can roughly be understood as a dependent record type of 
the underlying logic ECC. Its elements can be regarded as algebras of the 
corresponding signature that  satisfy the axioms stated in the specification. 

- Logically, there is no difference between declarations marked as AXIOM and 
declarations of sorts and elements of the signature. There is a pragmat ic  dis- 
tinction insomuch as axioms, together with theorems, receive special treat- 
ment  from the knowledge base and theorem prover (see section 3). Note that  
a specification is "flat" in the sense that  it is not formally split into a com- 
putat ional  and a propositional part ,  as in the case of deliverables [BM92]. 

- Theorems give rise to proof obligations, which can be solved using the prover 

integrated into TYPELAB. 

Specification types are first-class objects in TYPELAB. Parameter izat ion over 
specifications can be expressed by functions taking an element of a specification 
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type (such as ELEN, the specification of a non-empty carrier set, in Figure 1 
above) and yielding a specification type. 

In a similar vein, theory morphisms and refinements of specifications can be 
expressed by functions such as" the one depicted in Figure 2, mapping lists to 
monoids. 

defn LIST_to_MONOID := fun(E:ELEM, L:(LIST E)) 

(# T := L.List, op := L.append, unit := L.nil #) :: MONDID ; 

Fig. 2. Interpretation of Lists as Monoids 

Here, the monoid carrier is taken to be the carrier set of the lists, the binary 
operation op is the append function, and the unit is the empty list. By coercing 
this (partial) realization to the type of monoid specifications, proof obligations 
corresponding to the axioms of monoids are generated, such as the associativity 
of the operation (here: append). 

3 S y s t e m  S u p p o r t  

TYPELAB [vH+96] consists of a type checker, a partly automated proof assistant 
and, as an experimental feature, a knowledge base of developments and proofs. 
TYPELAB aims at integrating different currents of system development. Firstly, 
it is related to systems implementing particular type theories, as for example Alf 
[MN94], Coq [Cor95], Lego [LP92] and Nnprl [Con86]. With these systems, it 
shares the logical foundations and the constructive aspect, in that carrying out 
a proof essentially requires the construction of an appropriate term of the logic. 

However, TYPELAB tries to go beyond that by providing high-level proof 
tactics resembling those found in systems like PVS [OSR93], thus hiding the 
constructive aspect whenever it is not essential. In particular, a Tableaux-style 
theorem prover [Wag95] that can handle medium-size proof obligations auto- 
matically has been developed. The integration of a rewriting system for dealing 
with equality proofs is under way [Sor96]. 

Currently, a knowledge-based component is under construction, which aims 
at organizing mathematical entities and components of the software develop- 
ment process. These objects are arranged in a taxonomy which is structured 
by a subsumption relation (see [SLW96] and [Lut95] for details). In the case of 
parameterized specifications, the subsumption relation is a covariant refinement 
relation. In a style partly inspired by the IMPS system [FGT93], theorems can 
be inherited from more general to more specific theories along theory morphisms. 

A c k n o w l e d g m e n t s  

The design of the TYPELAB language and system has to a great extent been 
influenced by Holger Pfeifer, Harald Ruet3 and Detlef Schwier. Matthias Wagner 
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has contributed a lot to the infrastructure and has implemented most  of the 
Tableaux style theorem prover. Maria Sorea is currently working on integrating 
an equality prover into TYPELAB. 
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