
Part IV

TOOLS

TYPELAB: An Environment for Modular Program
Development*

F.W. von Henke, M. Luther, M. Strecker

Universits Ulm
D-89069 Ulm, Germany

1 I n t r o d u c t i o n

TYPELAB is an experimental specification and verification environment. Its spec-
ification language and its tool support provide assistance for a modular design
and development methodology.

The specification language of TYPELAB is based on a type theory, the Ex-
tended Calculus of Constructions (ECC) [Luo94], which gives the system a sound
semantic foundation. The pure type theory has been augmented by constructs
partly to be found in algebraic specification formalisms [Wit86, Gog84, Bidgl]
and other verification environments [OSR93, SJ94]. Particular language support
is offered for axiomatizing theories and specifications, for stating theorems, for
defining (even incomplete) morphisms between theories, for parameterization
over theories, and for operators on theories. The novelty of the language lies in
the combination of its features, which altogether yield a very expressive formal-
ism, rather than in each aspect taken separately. Some aspects of the language
will be illustrated in more detail in Section 2.

TYPELAB comprises a proof assistant which is primarily thought to be used
as an interactive proof checker. A sequent-style theorem prover has been devel-
oped for automatically solving medium-sized problems in restricted fragments of
the logic. The integration of a rewriting system for equality proofs is currently
under way. During a specification development activity or during a proof, a
knowledge base of previous program developments and proofs can be consulted.
The knowledge base mainly consists of specifications and is structured by theory
morphisms between specifications. The system support of TYPELAB is further
described in Section 3.

2 T h e S p e c i f i c a t i o n L a n g u a g e o f TYPELAB

The TYPELAB specification language has properties that make it suitable both
for small-scale and large-scale development and verification tasks. As an example
of a typical specification, consider an incomplete definition of the theory of lists,
as shown in Figure 1.

* This research has partly been supported by the "Deu~scne" 1 Forschungsgemeinschaft"
within the "Schwerpunktprogramm Deduktion"

852

idefn LIST := fun (E:ELEM)

SPEC

List:Type,

% constructors

nil: List,

cons: E.T -> List -> List,

selectors

first: {l:List I not (i = nil)} -> E.T,

rest: {l:List ~ not (i = nil)} -> List,

application of constructors to selectors

AXIOM first_selector:

all(e:E.T,l:List) (first (cons e i)) = e,

induction

AXIOM list_ind:

all(P:List ->Prop)

(P nil) ->
(all(e:E.T,l:List) ((P i) -> (P (cons e i)))) ->

(all(l:List) (P i)),

% constructor completeness

THEOREM constr_compl:
all(l:List) (I = nil) or (exists(e:E.T, ll:List) 1 = cons e 11)

END-SPEC;

Fig. 1. (Incomplete) Specification of Lists

A specification, enclosed in SPEC . . END-SPEC, consists of a sequence of
declarations and definitions, which can logically be interpreted in the following

way:

- A specification can roughly be understood as a dependent record type of
the underlying logic ECC. Its elements can be regarded as algebras of the
corresponding signature that satisfy the axioms stated in the specification.

- Logically, there is no difference between declarations marked as AXIOM and
declarations of sorts and elements of the signature. There is a pragmat ic dis-
tinction insomuch as axioms, together with theorems, receive special treat-
ment from the knowledge base and theorem prover (see section 3). Note that
a specification is "flat" in the sense that it is not formally split into a com-
putat ional and a propositional part , as in the case of deliverables [BM92].

- Theorems give rise to proof obligations, which can be solved using the prover

integrated into TYPELAB.

Specification types are first-class objects in TYPELAB. Parameter izat ion over
specifications can be expressed by functions taking an element of a specification

853

type (such as ELEN, the specification of a non-empty carrier set, in Figure 1
above) and yielding a specification type.

In a similar vein, theory morphisms and refinements of specifications can be
expressed by functions such as" the one depicted in Figure 2, mapping lists to
monoids.

defn LIST_to_MONOID := fun(E:ELEM, L:(LIST E))

(# T := L.List, op := L.append, unit := L.nil #) :: MONDID ;

Fig. 2. Interpretation of Lists as Monoids

Here, the monoid carrier is taken to be the carrier set of the lists, the binary
operation op is the append function, and the unit is the empty list. By coercing
this (partial) realization to the type of monoid specifications, proof obligations
corresponding to the axioms of monoids are generated, such as the associativity
of the operation (here: append).

3 S y s t e m S u p p o r t

TYPELAB [vH+96] consists of a type checker, a partly automated proof assistant
and, as an experimental feature, a knowledge base of developments and proofs.
TYPELAB aims at integrating different currents of system development. Firstly,
it is related to systems implementing particular type theories, as for example Alf
[MN94], Coq [Cor95], Lego [LP92] and Nnprl [Con86]. With these systems, it
shares the logical foundations and the constructive aspect, in that carrying out
a proof essentially requires the construction of an appropriate term of the logic.

However, TYPELAB tries to go beyond that by providing high-level proof
tactics resembling those found in systems like PVS [OSR93], thus hiding the
constructive aspect whenever it is not essential. In particular, a Tableaux-style
theorem prover [Wag95] that can handle medium-size proof obligations auto-
matically has been developed. The integration of a rewriting system for dealing
with equality proofs is under way [Sor96].

Currently, a knowledge-based component is under construction, which aims
at organizing mathematical entities and components of the software develop-
ment process. These objects are arranged in a taxonomy which is structured
by a subsumption relation (see [SLW96] and [Lut95] for details). In the case of
parameterized specifications, the subsumption relation is a covariant refinement
relation. In a style partly inspired by the IMPS system [FGT93], theorems can
be inherited from more general to more specific theories along theory morphisms.

A c k n o w l e d g m e n t s

The design of the TYPELAB language and system has to a great extent been
influenced by Holger Pfeifer, Harald Ruet3 and Detlef Schwier. Matthias Wagner

854

has contributed a lot to the infrastructure and has implemented most of the
Tableaux style theorem prover. Maria Sorea is currently working on integrating
an equality prover into TYPELAB.

R e f e r e n c e s

[Bid91]

[BM92]

[Con86]

[Cor95]

[FGT93]

[Gog84]

[LP92]

[Luo94]
[Lut95]

[MN94]

[OSR93]

[SJ94]

[SLW96]

[Sor96]

[vH+96]

[Wag95]

[Wir86]

Michel Bidoit. Development of modular specifications by stepwise refinements
using the PLUSS specification language. Proc. of the Unified Computation
Laboratory, Oxford University Press, 1991.
Rod Burstall and James McKinna. Deliverables: a categorical approach to
program development in type theory. Technical Report ECS-LFCS-92-242,
University of Edinburgh, October 1992.
R.L. Constable et al. Implementing Mathematics with the Nuprl Proof Devel-
opment System. Prentice-Hall, 1986.
Cristina Comes et al. The Coq Proof Assistant Reference Manual. INRIA
Rocquencourt and CNRS-ENS Lyon, 1995.
William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An

interactive mathematical proof system. J. of Automated Reasoning, 11:213-
248, 1993.
J.A. Goguen. Parameterized programming. IEEE Transactions on Software
Engineering, SE-10(5), September 1984.
Zhaohui Luo and Robert Pollack. LEGO Proof Development System: User's
Manual. University of Edinburgh, Department of Computer Science, 1992.
Zhaohui Luo. Computation and Reasoning. Oxford University Press, 1994.
Marko Luther. Wissensbasierte Methoden zur Beweisunterstiitzung in Type-
ntheorie. Master's thesis, Universit/it Ulm, 1995. Available at URL
ht tp://www.informatik.uni-ulm.de/ki/Forschung/D eduktion /ml-dipl.html.
Lena Magnusson and Bengt Nordstr6m. The ALF proof editor and its proof
engine. In H. Barendregt and T. Nipkow, editors, Types for Proofs and Pro-
grams, volume 806 of Springer LNCS, pages 213-237, 1994.
S. Owre, N. Shankar, and J.M. Rushby. The PVS Specification Language.
Computer Science Lab, SRI International, Menlo Park CA 94025, March 1993.
Y. V. Srinivas and R. Jiillig. Specware: Formal support for composing soft-
ware. Technical Report KES.U.94.5, Kestrel Institute, 1994.
M. Strecker, M. Luther, and M. Wagner. Structuring and using a knowl-
edge base of mathematical concepts: A type-theoretic approach. In ECA[-96
Workshop on Representation of mathematical knowledge, pages 23-26, 1996.
Maria Sorea. Integration yon Gleichheitsbeweisen in einen typentheoretischen
Beweiser. Master's thesis, Universits Ulm, 1996. Forthcoming.
F.W. von Henke, M. Luther, M. Strecker, and M. Wagner. The T Y P E L A B

specification and verification environment. In M. Nivat M. Wirsing, editor,
Proceedings AMAST'96, pages 604-607. Springer LNCS 1101, 1996.
Matthias Wagner. Entwicklung und Implementierung eines Beweis-
ers fiir konstruktive Logik. Master's thesis, Universits Ulm, 1995.
http: / /www.informatik.uni-ulm.de/ki/Forschung/Dedukti~
Martin Wirsing. Structured algebraic specifications: A kernel language. The-
oretical Computer Science, 42:123-249, 1986.

