
Proving System Correctness with KIV

Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel

Abt. Programmiermethodik
Universits Ulm, D-89069 Ulm, Germany

emaih {reif, schellhorn,stenzel}@informatik.tmi-u]m.de

1 S y n o p s i s

KIV 3.0 is an advanced tool for engineering high assurance systems. It supports:

- hierarchical formal specification of software and system designs
- specification of safety/security models
- proving properties of specifications
- modular implementation of specification components
- modular verification of implementations
- incremental verification and error correction
- reuse of specifications, proofs, and verified components

KIV 3.0 provides an economically applicable verification technology. It sup-
ports the entire design process from formal specifications to executable ver-
ified code. It is ready for use, and has been tested in a number of indus-
trial pilot applications. However, it can also be used as a pure specification
environment with a proof component. Furthermore, KIV serves as an educa-
tional and experimental platform in formal methods courses. Details on KIV
can be found in [Rei95], [RSS95], [RS95], and under http:/ /www.informatik.uni-
u lm.de/pm/kiv/kiv .h tml .

2 S y s t e m O v e r v i e w

S p e c i f i c a t i o n a n d S y s t e m D e v e l o p m e n t . KIV relies on first-order algebraic
specifications to describe hierarchically structured systems in the style of ASL,
[SW83]: Specifications are built up from elementary first-order specifications with
the operations enrichment, union, renaming, parameterization and actualization.
Specifications have a loose semantics and may include generation principles to
define inductive data types. Specification components can be implemented by
stepwise refinement using program modules. The designer is subject to a strict
decompositional design discipline leading to modular systems with compositional
correctness. As a consequence, the verification effort for a modular system be-
comes linear in the number of its modules. The structure of specifications and
implementations is visualized with [FW94] as a development graph. An exam-
ple is shown in fig. 1. In this graph, boxes correspond to algebraic specifications
and arrows indicate the "is subspecification of" relation. Diamonds are program

860

modules with the export interface above the module, and import below. Speci-
fications and modules both have theorem bases attached to them. The theorem
base of a specification contains the axioms, additional theorems (proved and yet
unproved ones) and proofs. For a module the theorem base contains automat-
ically generated proof obligations, which have to be proved to guarantee the
correctness of the module, and again additional theorems and proofs.

C o r r e c t n e s s M a n a g e m e n t . In KIV the user can freely create, change or delete
specifications, modules, and theorems. Theorems can be proved in any order (not
only bottom-up). An elaborate correctness management ensures, that changes
do not lead to inconsistencies. In particular it guarantees, that

- all specifications and theorems are correctly typed after changes to specifi-
cations

- there are no cycles in the proof hierarchy
- all lemmas used in a proof can be found in a theorem base of some subspec-

ification (and have not been modified)
- only a minimal number of proofs are invalidated after modifications
- eventually all theorems and proof obligations are proved.

I n t e r a c t i v e T h e o r e m P r o v i n g . KIV offers an advanced interactive deduction
component based on proof tactics. It combines a high degree of automation with
an elaborate interactive proof engineering environment. The interactive proof
strategy is based on induction, symbolic evaluation of definitions and programs
and on simplification in first-order theories. To automate proofs, KIV offers a
number of heuristics, see [RSS95]. These can be chosen freely, and changed any
time during the proof. Heuristics may be adapted to specific applications without
changing the implementation. Usually, the heuristics manage to find 80 - 100 %
of the required proof steps automatically. One highlight of KIV is its conditional
rewriter. It handles hundreds and even thousands of rules very efficiently, using
the compilation technique of [Kap87] with some extensions like AC-rewriting or
forward reasoning.

P r o o f E n g i n e e r i n g . Frequently the problem in engineering high assurance sys-
tems is not to verify proof obligations affirmatively but rather to interpret failed
proof at tempts indicating errors in specifications, programs, laminas etc. There-
fore KIV offers a number of proof engineering facilities to support the iterative
process of (failed) proof attempts, error detection, error correction and re-proof.
Proof trees can be inspected using a graphical interface (see fig. 1). Dead ends
can be cut off, proof decisions may be withdrawn both chronologically and non-
chronologically. Unprovable subgoals can be detected by automatically gener-
ating counter examples. Another interesting feature of KIV is its strategy for
proof reuse. Both successful and failed proof attempts are reused automatically
to guide the verification after correction ([RS95]). This goes beyond proof replay
(or proof scripts). We found that typically 90 % of a failed proof at tempt can
be recycled for the verification after correction.

861

I~ ! i>%-~ if!

I .

I~C1

Fig. 1. Two snapshots of the system

o o ~

. , . : m _

3 S o m e A p p l i c a t i o n s

This section lists some of the applications done with KIV. All of them made
strong usage of the features described above, and, additionally, often motivated
further improvements.
Safe C o m m a n d Transfer in a GNC. In cooperation with the company (intecs
sistemi, Pisa) that developed the software, part of the guidance and navigation
control (GNC) system of a space craft was treated formally, and reevaluated
in KIV 3.0 at the University of Ulm. The given safety requirements have been
verified, and a prototypical implementation has been proved correct. The major
benefits of the formal verification were the detection of an error in the informal
specification, and the explicit (and correct) specification of implicit assumptions.
Access Control . In this case study a generic access control model (based on
[ABLPgl]) is specified, implemented, and the implementation is proved correct.
Furthermore, it was formalized and proved that it is not possible for a user to
increase his rights without help fi'om others. All specifications together contain
about 1100 lines of text, while the efficient implementation has a size of 1200
lines of text. AIl in all 837 theorems and lemmas were proved. The overall time
needed to complete the case study (including a vast number of modifications,
error corrections, and reuse of proofs) was 14 weeks. See [FRSS95].
Compi le r Verification. Currently we work on a case study dealing with the
compilation of PROLOG into code for the Warren Abstract Machine (WAM).
In [BR94], the semantics of PROLOG is defined by a simple interpreter, which
is refined in 11 steps to an interpreter of WAM machine code. Meanwhile, we
have formalized 6 of the 12 levels with 1500 lines of specification. The transi-
tions between level 1/2 (PROLOG search tree vs. stack discipline, [SA96]), 2/3
(reuse of choicepoints), 3/4 (determinacy detection), 4/5 (compilation of pred-
icate structure), and 5/6 (switching) could be proven correct. In the course of

862

verification several errors were revealed in the compiler assumptions as well as
in the interpreters.
A L i b r a r y o f R e u s a b l e S p e c i f i c a t i o n s . The reuse of s tandard data types
decreases the t ime needed to develop the first version of a new structured spec-
ification considerably. The specifications are correct, and contain a large set of
already proved properties and rewrite rules which increases over time. Our li-
brary currently contains specifications for 28 da ta types with 217 functions and
1317 proved lemmas.
A B o o k i n g S y s t e m . A booking system for a national radio network was a for-
mal redevelopment of an impor tant part of an industrial project. The vast num-
ber of possible operations makes the specification (and implementat ion) large:
The specification contains 3400 lines, and the implementat ion 7100 lines of text,
of which 3600 lines where proved correct with an effort of one person year. This
project is the largest single application carried out with KIV so far.

References

[ABLP91]

[BR94]

[FRSS95]

[FW941

[Kap87]

[Rei95]

[RS95]

laSS95]

[SA9a]

[sw83]

M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A Calculus for Access
Control in Distributed Systems. In J. Feigenbaum, editor, CRYPTO '91.
Springer LNAI 576, 1991.
Egon BSrger and Dean Rosenzweig. A mathematical definition of full PRO-
LOG. Science of Computer Programming, 1994.
T. Fuchfi, W. Reif, G. Schellhorn, and K. Stenzel. Three Selected Case
Studies in Verification. In M. Broy and S. Jfitmichen, editors, KORSO:
Methods, Languages, and Tools for the Construction of Correct Software
- Final Report. Springer LNCS 1009, 1995.
M. FrSblich and M. Werner. Demonstration of the interactive graph visu-
alization system davinci. In R. Tamassia and I. Tollis, editors, DIMA CS
Workshop on Graph Drawing '9~. Proceedings, Springer LNCS 894. Prince-

ton (USA), 1994.
S. Kaplan. A compiler for conditional term rewriting systems. In 2nd Conf.
on Rewriting Techniques anf Applications. Proceedings. Bordeaux, France,

Springer LNCS 256, 1987.
W. Reif. The KIV-approach to Software Verification. In M. Broy and
S. J/ihnichen, editors, KORSO: Methods, Languages, and Tools for the Con-
struction of Correct Software - Final Report. Springer LNCS 1009, 1995.
W. Reif and K. Stenzel. Reuse of Proofs in Software Verification. In
J. K6hler, editor, Workshop on Formal Approaches to the Reuse of Plans,
Proofs, and Programs. Montreal, Quebec, 1995.
W. Reif, G. Schellhorn, and K. Stenzel. Interactive Correctness Proofs for
Software Modules Using KIV. In Tenth Annual Conference on Computer
Assurance:, IEEE press. NIST, Galthersburg, MD, USA, 1995.
G. Schellhorn and W. Ahrendt. Verification of a Prolog Compiler -
First Steps with KIV. Ulmer Informatik-Berichte 96-05, Universit/it Ulm,
Fakult~it fiir Informatik, 1996.
D. T. Sanella and M. Wirsing. A kernel language for algebraic specifica-
tion and implementation. In Coll. on Foundations of Computation Theory,
Springer LNCS 158. LinkSping, Sweden, 1983.

