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1 S y n o p s i s  

KIV 3.0 is an advanced tool for engineering high assurance systems. It supports: 

- hierarchical formal specification of software and system designs 
- specification of safety/security models 
- proving properties of specifications 
- modular implementation of specification components 
- modular verification of implementations 
- incremental verification and error correction 
- reuse of specifications, proofs, and verified components 

KIV 3.0 provides an economically applicable verification technology. It sup- 
ports the entire design process from formal specifications to executable ver- 
ified code. It is ready for use, and has been tested in a number of indus- 
trial pilot applications. However, it can also be used as a pure specification 
environment with a proof component. Furthermore, KIV serves as an educa- 
tional and experimental platform in formal methods courses. Details on KIV 
can be found in [Rei95], [RSS95], [RS95], and under http:/ /www.informatik.uni-  
u lm.de/pm/kiv/kiv .h tml .  

2 S y s t e m  O v e r v i e w  

S p e c i f i c a t i o n  a n d  S y s t e m  D e v e l o p m e n t .  KIV relies on first-order algebraic 
specifications to describe hierarchically structured systems in the style of ASL, 
[SW83]: Specifications are built up from elementary first-order specifications with 
the operations enrichment, union, renaming, parameterization and actualization. 
Specifications have a loose semantics and may include generation principles to 
define inductive data  types. Specification components can be implemented by 
stepwise refinement using program modules. The designer is subject to a strict 
decompositional design discipline leading to modular systems with compositional 
correctness. As a consequence, the verification effort for a modular system be- 
comes linear in the number of its modules. The structure of specifications and 
implementations is visualized with [FW94] as a development graph. An exam- 
ple is shown in fig. 1. In this graph, boxes correspond to algebraic specifications 
and arrows indicate the "is subspecification of" relation. Diamonds are program 
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modules with the export interface above the module, and import below. Speci- 
fications and modules both have theorem bases attached to them. The theorem 
base of a specification contains the axioms, additional theorems (proved and yet 
unproved ones) and proofs. For a module the theorem base contains automat- 
ically generated proof obligations, which have to be proved to guarantee the 
correctness of the module, and again additional theorems and proofs. 

C o r r e c t n e s s  M a n a g e m e n t .  In KIV the user can freely create, change or delete 
specifications, modules, and theorems. Theorems can be proved in any order (not 
only bottom-up). An elaborate correctness management ensures, that  changes 
do not lead to inconsistencies. In particular it guarantees, that 

- all specifications and theorems are correctly typed after changes to specifi- 
cations 

- there are no cycles in the proof hierarchy 
- all lemmas used in a proof can be found in a theorem base of some subspec- 

ification (and have not been modified) 
- only a minimal number of proofs are invalidated after modifications 
- eventually all theorems and proof obligations are proved. 

I n t e r a c t i v e  T h e o r e m  P r o v i n g .  KIV offers an advanced interactive deduction 
component based on proof tactics. It combines a high degree of automation with 
an elaborate interactive proof engineering environment. The interactive proof 
strategy is based on induction, symbolic evaluation of definitions and programs 
and on simplification in first-order theories. To automate proofs, KIV offers a 
number of heuristics, see [RSS95]. These can be chosen freely, and changed any 
time during the proof. Heuristics may be adapted to specific applications without 
changing the implementation. Usually, the heuristics manage to find 80 - 100 % 
of the required proof steps automatically. One highlight of KIV is its conditional 
rewriter. It handles hundreds and even thousands of rules very efficiently, using 
the compilation technique of [Kap87] with some extensions like AC-rewriting or 
forward reasoning. 

P r o o f  E n g i n e e r i n g .  Frequently the problem in engineering high assurance sys- 
tems is not to verify proof obligations affirmatively but rather to interpret failed 
proof at tempts indicating errors in specifications, programs, laminas etc. There- 
fore KIV offers a number of proof engineering facilities to support the iterative 
process of (failed) proof attempts, error detection, error correction and re-proof. 
Proof trees can be inspected using a graphical interface (see fig. 1). Dead ends 
can be cut off, proof decisions may be withdrawn both chronologically and non- 
chronologically. Unprovable subgoals can be detected by automatically gener- 
ating counter examples. Another interesting feature of KIV is its strategy for 
proof reuse. Both successful and failed proof attempts are reused automatically 
to guide the verification after correction ([RS95]). This goes beyond proof replay 
(or proof scripts). We found that  typically 90 % of a failed proof at tempt can 
be recycled for the verification after correction. 
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Fig. 1. Two snapshots of the system 
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3 S o m e  A p p l i c a t i o n s  

This section lists some of the applications done with KIV. All of them made 
strong usage of the features described above, and, additionally, often motivated 
further improvements. 
Safe C o m m a n d  Transfer  in a GNC.  In cooperation with the company (intecs 
sistemi, Pisa) that developed the software, part of the guidance and navigation 
control (GNC) system of a space craft was treated formally, and reevaluated 
in KIV 3.0 at the University of Ulm. The given safety requirements have been 
verified, and a prototypical implementation has been proved correct. The major 
benefits of the formal verification were the detection of an error in the informal 
specification, and the explicit (and correct) specification of implicit assumptions. 
Access Control .  In this case study a generic access control model (based on 
[ABLPgl]) is specified, implemented, and the implementation is proved correct. 
Furthermore, it was formalized and proved that it is not possible for a user to 
increase his rights without help fi'om others. All specifications together contain 
about 1100 lines of text, while the efficient implementation has a size of 1200 
lines of text. AIl in all 837 theorems and lemmas were proved. The overall time 
needed to complete the case study (including a vast number of modifications, 
error corrections, and reuse of proofs) was 14 weeks. See [FRSS95]. 
Compi le r  Verification. Currently we work on a case study dealing with the 
compilation of PROLOG into code for the Warren Abstract Machine (WAM). 
In [BR94], the semantics of PROLOG is defined by a simple interpreter, which 
is refined in 11 steps to an interpreter of WAM machine code. Meanwhile, we 
have formalized 6 of the 12 levels with 1500 lines of specification. The transi- 
tions between level 1/2 (PROLOG search tree vs. stack discipline, [SA96]), 2/3 
(reuse of choicepoints), 3/4 (determinacy detection), 4/5 (compilation of pred- 
icate structure), and 5/6 (switching) could be proven correct. In the course of 
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verification several errors were revealed in the compiler assumptions as well as 
in the interpreters. 
A L i b r a r y  o f  R e u s a b l e  S p e c i f i c a t i o n s .  The reuse of s tandard data  types 
decreases the t ime needed to develop the first version of a new structured spec- 
ification considerably. The specifications are correct, and contain a large set of 
already proved properties and rewrite rules which increases over time. Our li- 
brary  currently contains specifications for 28 da ta  types with 217 functions and 
1317 proved lemmas.  
A B o o k i n g  S y s t e m .  A booking system for a national radio network was a for- 
mal  redevelopment of an impor tant  part  of an industrial project. The vast num- 
ber of possible operations makes the specification (and implementat ion) large: 
The specification contains 3400 lines, and the implementat ion 7100 lines of text, 
of which 3600 lines where proved correct with an effort of one person year. This 
project is the largest single application carried out with KIV so far. 
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