Skip to main content

Fixed topology alignment with recombination

  • Session IV
  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1448))

Included in the following conference series:

Abstract

In this paper, we study a new version of multiple sequence alignment, fixed topology alignment with recombination. We show that it can not be approximated within any constant ratio unless P = NP. For a more restricted version, we show that the problem is MAX-SNP-hard. This implies that there is no PTAS for this version unless P = NP. We also propose approximation algorithms for a special case, where each internal node has at most one recombination child and any two merge paths for different recombination nodes do not share any common node.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Altschul and D. Lipman, Trees, stars, and multiple sequence alignment, SIAM Journal on Applied Math., 49 (1989), pp. 197–209.

    Google Scholar 

  2. B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp and L. Zhang, On distances between phylogenetic trees, Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, Jan. 1997, New Orleans.

    Google Scholar 

  3. B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp, On the linear-cost subtree-transfer distance, submitted to Algorithmica, 1997.

    Google Scholar 

  4. Z. Galil and R. Ciancarlo, 11Speeding up dynamic programming with applications to molecular biology”, Theoretical Computer Science 64, pp. 107–118, 1989.

    Google Scholar 

  5. D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, 1997.

    Google Scholar 

  6. J. Hein, A new method that simultaneously aligns and reconstructs ancestral sequences for any number of homologous sequences, when the phylogeny is given, Mol. Biol. Evol. 6 (1989), 649–668.

    Google Scholar 

  7. J. Hein, Reconstructing evolution of sequences subject to recombination using parsimony, Math. Biosci. 98 (1990), 185–200.

    Google Scholar 

  8. J. Hein, A heuristic method to reconstruct the history of sequences subject to recombination, J. Mod. Evo. 36 (1993) 396–405.

    Google Scholar 

  9. J. Hein, T. Jiang, L. Wang, and K. Zhang, On the complexity of comparing evolutionary trees, Discrete Applied Mathematics, 71 (1996), 153–169.

    Google Scholar 

  10. D. Hochbaum, Approximation Algorithms for NP-hard Problems, PWS, to appear.

    Google Scholar 

  11. S. K. Kannan and E. W. Myers, “An algorithm for locating non-overlapping regions of maximum alignment score”, CPM93, pp. 74–86, 1993.

    Google Scholar 

  12. J. Kececioglu and D. Gusfield, “ Reconstructing a history of recombinations from a set of sequences”, 5th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, Virginia, pp. 471–480, January 1994

    Google Scholar 

  13. G. M. Landau and J. P. Schmidt, “An algorithm for approximate tandem repeats, CPM'93, pp. 120–133, 1993.

    Google Scholar 

  14. D. Sankoff, Minimal mutation trees of sequences, SIAM J. Applied Math. 28 (1975), 35–42.

    Google Scholar 

  15. D. Sankoff, R. J. Cedergren and G. Lapalme, Frequency of insertion-deletion, transversion, and transition in the evolution of 5S ribosomal RNA, J. Mol. Evol. 7 (1976), 133–149.

    Google Scholar 

  16. D. Sankoff and R. Cedergren, Simultaneous comparisons of three or more sequences related by a tree, In D. Sankoff and J. Kruskal, editors, Time warps, string edits, and macromolecules: the theory and practice of sequence comparison, pp. 253–264, Addison Wesley, 1983.

    Google Scholar 

  17. F. W. Stahl, “Genetic recombination”, Scientific American, 90–101, February 1987.

    Google Scholar 

  18. D. Swofford and G. Olson, Phylogenetic reconstruction, in Molecular Systemtics, D. Hillis and C. Moritz (eds), Sinauer Associates, Sunderland, MA, 1990.

    Google Scholar 

  19. J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, A. M. Weiner, “Molecular Biology of the gene, 4th edition, Benjamin-Cummings, Menlo Park, California, 1987.

    Google Scholar 

  20. L. Wang and T. Jiang, On the complexity of multiple sequence alignment, Journal of Computational Biology, 1 (1994), 337–348.

    Google Scholar 

  21. L. Wang, T. Jiang and E.L. Lawler, Approximation algorithms for tree alignment with a given phylogeny, Algorithmica, 16 (1996), 302–315.

    Google Scholar 

  22. L. Wang and D. Gusfield, Improved approximation algorithms for tree alignment, Journal of Algorithms, vol. 25, pp. 255–173, 1997.

    Google Scholar 

  23. L. Wang, T. Jiang, and Dan Gusfield, A more efficient approximation scheme for tree alignment, Proceedings of the First Annual International Conference on Computational Molecular Biology, pp. 310–319, 1997.

    Google Scholar 

  24. M.S. Waterman, Introduction to Computational Biology: Maps, sequences, and genomes, Chapman and Hall, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Farach-Colton

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mal, B., Wange, L., Lia, M. (1998). Fixed topology alignment with recombination. In: Farach-Colton, M. (eds) Combinatorial Pattern Matching. CPM 1998. Lecture Notes in Computer Science, vol 1448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030789

Download citation

  • DOI: https://doi.org/10.1007/BFb0030789

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64739-3

  • Online ISBN: 978-3-540-69054-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics