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Abstract

We propose and study a new constrained independence system. We obtain a sequence of
results, including a matching theorem for bases of the system and introducing a set of light
elements which give a lower bound for the objective function of a minimization problem in
the system. We then demonstrate that the set of triangulations of a planar point set can be
modeled as constrained independence systems. The corresponding minimization problem in the
system is the well-known minimum weight triangulation problem. Thus, we obtain two matching
theorems for triangulations and a set of light edges (or light triangles) that give a lower bound
for the minimum weight triangulation. We also prove directly a third matching theorem for
triangulations. We show that the set of light edges is a superset of some subsets of edges of a
minimum weight triangulation that were studied before.
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1 Introduction

Independence system plays a very important role in the study of discrete optimization problems
and matroid is a well-known example [Wel76]. In this paper, we propose a constrained independence
system and study some of its combinatorial properties. In particular, we prove a matching theorem
for bases of such a system. We define a minimization problem for such a system and presents two
heuristics that are based on a greedy approach and a local search method, respectively. We also

study how to obtain a lower bound to the minimization problem.

The constrained independence problem can be used to model the set of all possible triangulations
of a given planar point set. Thus, our result implies a matching between edges/triangles of different
triangulations of the same point set. (The same matching theorem is also obtained independently
by Aichholzer et al [AATR].) This is a new structural property of triangulations that were not
known before. The minimization problem for a constrained independence system then translates
to the open problem of finding a minimum weight triangulation. We present two lower bounds to

this problem.

The definition of constrained independence system is very similar to that of matroid. However,
the minimization for a constrained independence system can be shown to be NP-hard [Rot], while
the optimization problem for matroid can be solved efficiently by a greedy strategy. This implies
that if the minimum weight triangulation problem can be solved in polynomial time, then properties
(perhaps geometrical) other than those captured by the constrained independence system have to

be discovered.

The rest of this paper is organized as follows. In Section 2, we define the constrained inde-
pendence system and prove several properties, including the matching theorem and a lower bound
for the minimization problem. In Section 3, we model the triangulations with constrained inde-
pendence systems. In Section 3.1, we first present two matching theorems for triangulations that
follow from the result in Section 2. We also prove directly another different matching theorem for
triangulations. In Section 3.2, we use the result in Section 2 to define light edges and light triangles,
which will give lower bounds to the minimum weight triangulation problem. We also prove that

the set of light edges is a superset of subsets of edges of minimum weight triangulations studied by
Keil [Kei94] and Xu [Xu92].

2 Constrained independence system

Given E a finite set of elements and J a nonempty collection of subsets of F, (£, J) is an inde-
pendence system if Y € 7 whenever X € 7 and Y C X. The elements of 7 are called independent

sets. A maximal independent set is called a base. Any subset of E that does not belong to 7 is



called a dependent set. A minimal dependent set is called a circuit. A lot of combinatorial opti-
mization problems can be formulated as optimization problems on different independence systems

by associating appropriate non-negative weight w(e) with each element e of F,

We define a constrained independence system as follows. (F,J) is a constrained independence

system if it is an independence system and it satisfies the following conditions:

Condition(1). If XY € 7 with |Y| =p and | X| = p+ 1, then there is an element e € £ — Y
such that Y U {e} € J.

Condition(2). The cardinality of every circuit is two.
Fact. Every base of an independence system that satisfies condition(1) has the same cardinality. O

The definition of constrained independence system is very similar to that of matroid. A matroid
is an independence system such that if X,Y € J with |Y| = p and |X| = p+ 1, then there is an
element e € X — Y such that Y U {e} € J. This is more restrictive than condition(1). Also, in

general, a matroid may not satisfy condition(2).

2.1 A matching theorem

We prove a matching theorem for bases of a constrained independence system. Let 5 be the set of

all bases.

Theorem 1 Given B, B’ € B, there exists a perfect matching between B and B’, such that if e € B

and ¢’ € B’ are matched, then either e = ¢’ or {e, €'} is a circuit.

Proof Construct a bipartite graph with vertex set B and B’. There is an edge between ¢ € B
and ¢/ € B'if e = ¢ or {e, €'} is a circuit. For any subset F' C B, let N(F) be the set of vertices
in B’ that are adjacent to some vertex in F. We now show that |N(F)| > |F| and thus, by the
Kénig-Hall matching theorem [Bol79], there is a perfect matching between B and B’.

We claim that F'U (B’ — N(F)) € J. Otherwise, F'U (B’ — N(F)) contains some circuit {e,e’}
(which contains exactly two elements by condition(2)) such that e € F and ¢/ € B’ — N(F). But
this implies that ¢’ € N(F), a contradiction. Since FF'U (B’ — N(F)) € J and all bases have the
same cardinality, |F'U(B'— N(F))| < |B’|. Moreover, |FU(B' = N(F))| = |F|+ |B'| = |N(})]. So
we conclude that |[N(F)| > |F|. This completes the proof. O



2.2 The minimization problem

In this section, we consider optimization problems for a constrained independence system which

can be formulated as

where w(e) is the (non-negative) weight of e. In general, it is very difficult to find an optimal
solution for the objective function. However, local optimum can be computed efficiently using a

greedy approach.

A base B is a local optimum if for every e* € B and € € FF— B such that {¢'}U(B —{e*})is a
base, we have 3~ cpw(e) < 3ccreryu(B—{er)) W(E)-

Algorithm Greedy

Input : (£, J)

Output : B,
B, = 0;
Q:=F;

while @ # 0 do
find e € @ such that w(e) is minimized;

Q= Q —{e};
if B, U{e} € J then B, := B, U {e}
end while

Theorem 2 The output of algorithm Greedy, By, is a base and is a local optimum.

Proof It is clear that B, € J. Assume to the contrary that B, is not maximal. Then there exists
e € ' — B, such that B, U {e} € J, which implies that {e} U A € J for all A C B,. Thus, when
e was examined by algorithm Greedy, e should have been included in B,, a contradiction. Hence,

B, is a base.

Assume to the contrary that B, is not a local optimum. Then there exists e € B, and ¢/ € E—B,
such that {¢'}U (B, —{e}) is a base and w(e’) < w(e). Therefore, algorithm Greedy should examine
¢/ before e. Since {e'} U (B, —{e}) € J, {¢}UA € J for all A C B, — {e}. Thus, € will be

included and so e will not be included later, which contradicts our assumption. O

Remark. Since the proof of Theorem 2 does not make use of condition(1) and condition(2), the

result is true for all independence systems. O



The greedy solution can be viewed as an approximate solution to the minimization problem.
Sometimes, we may be given a base B and we are asked to obtain an improved solution. We can
handle this problem with algorithm ESA which uses repeated element substitution to obtain an
improved solution. A base B’ is obtained from another base B by element substitution, if there
exists e € B and €' € B’ — B such that B’ = {¢’} U (B — {e}).

Algorithm ESA
Input : A base B
Output : A base B*
B* .= B;
while B* is not a local optimum do
find e € B* and ¢’ € E — B* such that {¢'} U (B* — {e}) is a base and w(e') < w(e)
B* = (B* —{e})U{€}

end while

From the working of algorithm ESA, it is clear that the following is true.

Theorem 3 Let B and B* be the input and output of algorithm ESA, respectively. Then B* is a
local optimum and Y g« w(e) < 3 .cpw(e). If B is not a local optimum, then the inequality holds
strictly.

We do not know of any polynomial-time algorithm that can solve the general minimization
problem. Thus, it may be helpful to derive lower bound to the objective function, which can then
guide the running of some heuristics or exhaustive search algorithms. We describe one such lower
bound in the following. An element e € Eis light if w(e) < w(e’) for all ¢ € E such that {e, e’} ¢ J.
Let L(F) be the set of all light elements.

Theorem 4 L(E) € J and 3 cppyw(e) < minpes ) .cpwle).

Proof  Assume to the contrary that L(E) ¢ J. Then there exists a circuit in L(F). By
condition(2), this circuit is {e1, e3} € J for some e1,e3 € L(E). But this implies that w(e;) < w(ez)
and w(ey) < w(ey), a contradiction. Let B* be a base such that )~ cg«w(e) = minpes ) .cp w(e).
Since L(E) € J, by condition(1), there is a base B such that L(£) C B. We apply Theorem 1
to B and B*. Thus, every e; € L(F) is matched with an ey € B* such that either e; = ey or
{e1,e2} § T. If {e1, e} & T, then w(ey) < w(ey) as ey € L(E). So we conclude that w(ey) < w(ey)
and hence 3 crpyw(e) < Y oeps wie). O



S0 3 cer(my w(e) is a lower bound to minpeg )_.cp w(e). In the proof above, we mention that
there exists a base B such that L(£) C B. We can identify one such possible B to be B,, where
B, is the output of algorithm Greedy.

Theorem 5 L(E)C B,.

Proof Let e € L(E). For all ¢ € E, if {e, €'} is a circuit, then w(e) < w(e’) as e € L(F).
Therefore, no such €’ can be examined before e in algorithm Greedy, which implies that e should

be included in the greedy solution when it is examined. This completes the proof. O

3 Applications in triangulations

Let 5 be a finite planar point set. To simplify our exposition, we assume that no three points in
S are collinear. Let E(S) denote the set of edges with endpoints in S. Let A(S) denote the set of
empty triangles with vertices in S. (In this paper, we treat a triangle as the closed region bounded
by its boundary edges.) A triangle is empty if its interior does not contain any point in 5. Given

an edge e (resp. a triangle A), we use inte (resp. intA) to denote the interior of e (resp. A).

A triangulation T, (9) is a maximal subset of E(5') such that inte; Ninte; = () for any two distinct
edges e1,€e3 € Tc(5). Let n denote the cardinality of 5. From Euler’s formula, we have [Ede87]

[Te(5)] = 3n = 3 — |CH(5)], (1)

where C'H(5') denotes the set of boundary edges of the convex hull of 5. We can equivalently view
a triangulation as a maximal subset T;(.5) of A(9) such that intA; NintA, = @ for any two distinct
triangles Ay, Ay € Ty(.5). The following can also derived from Euler’s formula.

|T:(9)| =2n—-2—|CH(S)|. (2)

3.1 Matching theorems for triangulations

Given a point set S of size n, define J7.(5) to be the collection of subsets of E(S) such that for
all X € J.(5) and e1,e; € X, inte; Ninte; = . We claim that (E(S5),7.(9)) is a constrained
independence system. By Equation 1, every base in [J.(.5) has the same cardinality and hence
condition(1) is satisfied. Condition(2) is also satisfied since the smallest dependent set must be an

intersecting pair of edges in F/(.5). By Theorem 1, we have the following corollary.

Corollary 1 Given a finite point set S and two triangulations Ty, Ty € J.(5), there exists a perfect
matching between Ty and Ty such that if ey € Ty and ey € Ty are matched, then inteq Nintey # . O
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Figure 1:

We can also consider the constrained independence system (A(S), Ji(5)), where Jy(9) is the
collection of subsets of A()9) such that for all X € 7;(5) and Ay, Ay € X, intAy NintAy = . We

then obtain another corollary from Theorem 1.

Corollary 2 Given a finite point set S and two triangulations 11,1y € Ji(S), there exists a perfect
matching between Ty and Ty such that if Ay € Ty and Ay € Ty are matched, then intAq NintA, #
0. O

Corollaries 1 and 2 are also obtained independently by [AATR]. We can actually obtain a
matching theorem stronger than Corollary 2 by applying the Kénig-Hall Theorem directly.

Theorem 6 Given a finite point set S and two triangulations T, Ty € Ji(5), there exists a perfect
matching between Ty and Ty such that if Ay € T1 and Ay € Ty are matched, then

1. intAl N intAg 7£ @

2. V(A1) NV(Ay) # 0, where V(A;) denotes the vertex set of A;, i = 1 to 2.

Proof Construct a bipartite graph with one vertex set corresponding to triangles in 77 and the
other vertex set corresponding to triangles in 75. For convenience, we use A; € T;, 7 = 1 or 2,
to denote both a triangle and the corresponding vertex in the bipartite graph. There is an edge
between Ay € Ty and Ay € Ty if intAqNintAg # @ and V(A1)NV(Ay) # 0. For any subset F' C T},
let N(F') C Ty be the set of triangles that are neighbors of some triangle in F. To complete the
proof, it suffices to show that |[N(F)| > |F|. Let @ be a vertex of a triangle Ay in F. There is a set
of triangles in N (F') that share the vertex = with A;. Moreover, the union of the angles of these
triangles at & must contain the angle of Ay at . Thus, if we sum up the angles of all triangles in
N(F) and F, we obtain the inequality x| N(F)[ > |F|[, which implies that [N(F)[ > |F]. O

By Theorem 6, two matched triangles are either identical or they are in one of the four config-

urations shown in Figure 1.

3.2 Light edges and triangles

Given a finite point set .5 in the plane, the minimum weight triangulation problem is to triangulate

the point set so that the sum of edge lengths is minimized. The complexity of the problem has



not been resolved: neither is it known to be NP-hard nor is a polynomial-time algorithm known to
exist [GJ79]. Also, no approximation algorithm is known that achieves a constant approximation
ratio [HP90]. The best approximation algorithm is due to Plaisted and Hong [PH87] which achieves
an approximation ratio of O(logn), where n is the size of the given point set. In this section, we
make use of Theorem 4 to give a lower bound on the sum of edge lengths in a minimum weight

triangulation.

Given an edge e € E(S), define w(e) to be its length. An edge e is light if w(e’) > w(e) for all
edge € € L(5) such that inte Ninte’ # (). We use L(E(S5)) to denote the set of light edges.

We can define light triangles similarly. Given a triangle A € A(S), define w(A) to be its
perimeter. A triangle A is light if w(A’) > w(A) for all triangle A’ € A(9) such that int ANintA’ #
0. We use L(A(S)) to denote the set of light triangles.

In [KR&5], a f-skeleton of a planar point set is introduced and it is proved in [Kei94] that a
V/2-skeleton is a subgraph of a minimum weight triangulation. We describe the definition of 3-
skeleton below. For § > 1, the forbidden neighborhood for points x and y is defined to be the
union of the two disks of radius 5 - d(z,y)/2 that pass through both = and y (see Figure 2), where
d(z,y) denotes the distance between z and y. The edge zy is in the 3-skeleton if the forbidden
neighborhood for z and y does not contain any point of the given point set. (There is actually
another variant of 3-skeleton, the definition of which is based on lune-like neighborhood provided
in [KR85]. The above results refer to the disk-based forbidden neighborhood described.) We use
B(L(S)) to denote the f-skeleton, for § > 1.

We now prove that 3(E(S)) C L(E(S)) for 8 > 2/v/3 which implies that the /2-skeleton is a
subset of L(E(S9)).

Theorem 7 B(E(5)) C L(E(S)) for 5 > 2/V/3.

Proof Refer to Figure 2. Let the union of the two disks shown be the forbidden neighborhood of
x and y. Suppose that the forbidden neighborhood is empty. Note that the disk centers » and w

are on opposite sides of zy. It suffices to show that every edge that intersects zy is longer than zy.

Suppose that an edge ab intersects zy at a point z and the disk centers are on opposite sides of

ab. By geometry, az is longer than yz and bz is longer than zz. Thus ab is longer than xy.

Suppose that an edge bc intersects xy and v and w lie on the same side of be. Draw a line
segment from ¢ through z to a point d on the boundary of the other disk. By geometry, be is longer
than ed. Thus, it suffices to show that cd is at least as long as zy for 3 > 2/v/3. Imagine that cd
is actually an elastic rod that passes through z and connects two points on the boundary of the

two disks. If we move the endpoints of the elastic rod to rotate it about z, its length will change.



Figure 2:

The length of ¢z is a convex function in Zcay. Similarly, the length of dz is a convex function in
Ldzy. Since length of ¢d is the sum of the lengths of ez and dz, it is also a convex function in Zezy.
Moreover, length of ez equals length of daz when ¢d is perpendicular to zy. Therefore, the length

of ¢d is maximized when cd is perpendicular to zy.

Thus, the length of ¢d achieves the minimum when ¢ coincides with z and d moves to a point e
such that ex is a tangent to the disk with center v. Refer to Figure 2. Let r be the radius of the two
disks. Let 8 = Zvzy = Lwzy. Then in order that zy is light, we require that 2rcos(7/2 — 26) >
d(x,y). Since d(z,y)/2r = cosf, this is equivalent to sin20 > cosf or cosf < /3/2. Since
B =2r/d(x,y) =1/ cos#, this is equivalent to requiring that g > 2/v/3. O

Another kind of subgraph of a minimum triangulation is the intersection of the edge set of all
triangulations. This common intersection is called the stable line segments in [Xu92]. Since each
stable line segment is not intersected by any other edge in F(5), L(E(S)) contains all the stable

line segments by definition.

By considering the constrained independence systems (£(.5), Je(5)) and (A(S), Jx(.5)) and ap-

plying Theorem 4, we obtain the following lower bounds for a minimum weight triangulation.

Corollary 3 Let MWT.(S) and MWT,(S) be the set of edges and triangles, respectively, of a

minimum weight triangulation.

1Y cer(r(sy) wie) < Yeemwr.(s) w(e)
2. Yaenas) WA) < X acuwr(s) w(A).
We want to point out that the two formulations (E(S5), J.(5)) and (£(5), J(9)) are different.

Refer to Figure 3(a). By construction, ac is longer than bd, ad and be are longer than bd, and ab

and be are the shortest edges. So the set of light edges {ab, bc,bd, ad, cd} is exactly the minimum
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Figure 3:

weight triangulation. The triangle abc has the smallest perimeter and it is the only light triangle.
Thus, in this example, running Greedy on edges will give us a better triangulation (the optimal one)
than running Greedy on triangles. Refer to Figure 3(b). By construction, ad and bc are shortest
and e¢d is shorter than ae and be. Also, the sum of lengths of ae and be is less than the sum of
lengths of ed and ac. So the set of light edges is {ad, ab, bc,cd,de, ce}. The set of light triangles is
{ade,bce}. Thus, in this example, running Greedy on triangles will give us a better triangulation

(the optimal one) than running Greedy on edges.

Theorem 5 implies that L(£(.5))is a subset of the greedy triangulation. Given any triangulation,
we can use algorithm ESA to try to obtain an improved triangulation. The repeated element
substitution in algorithm ESA translates to repeated swapping of diagonals of convex quadrilaterals

formed by two neighboring triangles.

4 Conclusion and related work

We introduce the constrained independence system and prove some properties which lead to some
structural characterization about triangulations of a planar point set. Whether there exists stronger
matching theorems for constrained independence system or triangulations is open. It is also in-
teresting to study the application of the matching theorem to the minimum weight triangulation
problem. By considering triangulations directly, Aichholzer et al [AATR] independently obtained
Corollary 1 and Corollary 2. They can also construct a perfect matching between edges in an
arbitrary triangulation and edges in F(S5), such that the length sum of matched edges in E(5)
is minimized. This provides a lower bound to the minimum weight triangulation problem. If the

greedy triangulation is used to construct such a matching, then the lower bound derived is an



improvement of the length sum of light edges.
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