Abstract
In this paper, we study the complexity of 3D weak visibility. We obtain an O(n 8) time and Θ(n 6) space algorithm to compute the weakly visible region of a triangle F from another triangle G among general scenes, which are a set of n disjoint triangles. We also consider the cases when the scenes are rectilinear objects and polyhedral terrains. We show that in these special situations the weakly visible regions can be computed much faster in O(n 6) time and O(n 4) space. With these results, we obtain the first known polynomial time algorithm to decide whether or not a simple polyhedron is weakly (internally or externally) visible.
Preview
Unable to display preview. Download preview PDF.
References
D. Avis, T. Gum, and G. Toussaint. Visibility between two edges of a simple polygon. Visual Comput., 2(6):342–357, December 1986.
D. Avis and G. T. Toussaint. An optimal algorithm for determining the visibility of a polygon from an edge. IEEE Trans. Comput., C-30:910–1014, 1981.
M. Bern, D. Dobkin, D. Eppstein, and R. Grossman. Visibility with a moving point of view. Algorithmica, 11:360–378, 1994.
B. K. Bhattacharya, A. Mukhopadhyay, and G. T. Toussaint. A linear time algorithm for computing the shortest line segment from which a polygon is weakly visible. In Proc. 2nd Workshop Algorithms Data Struct., volume 519 of Lecture Notes in Computer Science, pages 412–424. Springer-Verlag, 1991.
D. Z. Chen. An optimal parallel algorithm for detecting weak visibility of a simple polygon. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 63–72, 1992.
D. Z. Chen. Optimally computing the shortest weakly visible subedge of a simple polygon. In Proc. 4th Annu. Internat. Sympos. Algorithms Comput. (ISAAC 93), volume 762 of Lecture Notes in Computer Science, pages 323–332. Springer-Verlag, 1993.
R. Cole and M. Sharir. Visibility problems for polyhedral terrains. J. Symbolic Computation, 7:11–30, 1989.
M. Cohen and J. Wallace. Radiosity and Realistic Image Synthesis. Academic Press, 1993.
H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir. Arrangements of curves in the plane: topology, combinatorics, and algorithms. Theoret. Comput. Sci., 92:319–336, 1992.
Z. Gigus, J. Canny, and R. Seidel. Efficiently computing and representing aspect graphs of polyhedral objects. IEEE Trans. PAMI, 13(6):542–551, 1991.
Z. Gigus and J. Malik. Computing the aspect graphs for line drawings of polyhedral objects. IEEE Trans. PAMI, 12(2):113–122, 1990.
S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing visibility graphs, SIAM J. Comput., 20:888–910, 1991.
S. K. Ghosh, A. Maheshwari, S. P. Pal, S. Saluja, and C. E. Veni Madhavan. Characterizing weak visibility polygons and related problems. In Proc. 2nd Canad. Conf. Comput. Geom., pages 93–97, 1990.
A. Gajentaan and M. Overmars. On a class of O(n 2) problems in computational geometry. Report 1993-15, Department of Comput. Sci., Utrecht Univ., 1993.
J. Matoušek, N. Miller, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat triangles determine linearly many holes. In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 49–58, 1991.
H. Plantinga. An algorithm for finding the weakly visible faces from a polygon in 3-d. In Proc. 4th Canad. Conf. Comput. Geom., pages 45–51, 1992.
J.-R. Sack and S. Suri. An optimal algorithm for detecting weak visibility of a polygon. Report SCS-TR-114, School Comput. Sci., Carleton Univ., Ottawa, ON, 1986.
S. J. Teller. Computing the antipenumbra of an area light source. Comput. Graph., 26(4):139–148, July 1992.
S. Teller and P. Hanrahan. Global visibility algorithms for illumination computations. In Proc. SIGGRAPH '93, pages 239–246, 1993.
B. Zhu. Computational Geometry in Two and a Half Dimensions. PhD thesis, School of Computer Science, McGill University, Montreal, Canada, 1994.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, C., Zhu, B. (1995). Three dimensional weak visibility: Complexity and applications. In: Du, DZ., Li, M. (eds) Computing and Combinatorics. COCOON 1995. Lecture Notes in Computer Science, vol 959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030819
Download citation
DOI: https://doi.org/10.1007/BFb0030819
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60216-3
Online ISBN: 978-3-540-44733-7
eBook Packages: Springer Book Archive