Skip to main content

Three dimensional weak visibility: Complexity and applications

  • Session 2A: Computational Geometry
  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 959))

Included in the following conference series:

  • 153 Accesses

Abstract

In this paper, we study the complexity of 3D weak visibility. We obtain an O(n 8) time and Θ(n 6) space algorithm to compute the weakly visible region of a triangle F from another triangle G among general scenes, which are a set of n disjoint triangles. We also consider the cases when the scenes are rectilinear objects and polyhedral terrains. We show that in these special situations the weakly visible regions can be computed much faster in O(n 6) time and O(n 4) space. With these results, we obtain the first known polynomial time algorithm to decide whether or not a simple polyhedron is weakly (internally or externally) visible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Avis, T. Gum, and G. Toussaint. Visibility between two edges of a simple polygon. Visual Comput., 2(6):342–357, December 1986.

    Article  Google Scholar 

  2. D. Avis and G. T. Toussaint. An optimal algorithm for determining the visibility of a polygon from an edge. IEEE Trans. Comput., C-30:910–1014, 1981.

    Google Scholar 

  3. M. Bern, D. Dobkin, D. Eppstein, and R. Grossman. Visibility with a moving point of view. Algorithmica, 11:360–378, 1994.

    Article  Google Scholar 

  4. B. K. Bhattacharya, A. Mukhopadhyay, and G. T. Toussaint. A linear time algorithm for computing the shortest line segment from which a polygon is weakly visible. In Proc. 2nd Workshop Algorithms Data Struct., volume 519 of Lecture Notes in Computer Science, pages 412–424. Springer-Verlag, 1991.

    Google Scholar 

  5. D. Z. Chen. An optimal parallel algorithm for detecting weak visibility of a simple polygon. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 63–72, 1992.

    Google Scholar 

  6. D. Z. Chen. Optimally computing the shortest weakly visible subedge of a simple polygon. In Proc. 4th Annu. Internat. Sympos. Algorithms Comput. (ISAAC 93), volume 762 of Lecture Notes in Computer Science, pages 323–332. Springer-Verlag, 1993.

    Google Scholar 

  7. R. Cole and M. Sharir. Visibility problems for polyhedral terrains. J. Symbolic Computation, 7:11–30, 1989.

    Google Scholar 

  8. M. Cohen and J. Wallace. Radiosity and Realistic Image Synthesis. Academic Press, 1993.

    Google Scholar 

  9. H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir. Arrangements of curves in the plane: topology, combinatorics, and algorithms. Theoret. Comput. Sci., 92:319–336, 1992.

    Article  Google Scholar 

  10. Z. Gigus, J. Canny, and R. Seidel. Efficiently computing and representing aspect graphs of polyhedral objects. IEEE Trans. PAMI, 13(6):542–551, 1991.

    Google Scholar 

  11. Z. Gigus and J. Malik. Computing the aspect graphs for line drawings of polyhedral objects. IEEE Trans. PAMI, 12(2):113–122, 1990.

    Google Scholar 

  12. S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing visibility graphs, SIAM J. Comput., 20:888–910, 1991.

    Article  Google Scholar 

  13. S. K. Ghosh, A. Maheshwari, S. P. Pal, S. Saluja, and C. E. Veni Madhavan. Characterizing weak visibility polygons and related problems. In Proc. 2nd Canad. Conf. Comput. Geom., pages 93–97, 1990.

    Google Scholar 

  14. A. Gajentaan and M. Overmars. On a class of O(n 2) problems in computational geometry. Report 1993-15, Department of Comput. Sci., Utrecht Univ., 1993.

    Google Scholar 

  15. J. Matoušek, N. Miller, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat triangles determine linearly many holes. In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 49–58, 1991.

    Google Scholar 

  16. H. Plantinga. An algorithm for finding the weakly visible faces from a polygon in 3-d. In Proc. 4th Canad. Conf. Comput. Geom., pages 45–51, 1992.

    Google Scholar 

  17. J.-R. Sack and S. Suri. An optimal algorithm for detecting weak visibility of a polygon. Report SCS-TR-114, School Comput. Sci., Carleton Univ., Ottawa, ON, 1986.

    Google Scholar 

  18. S. J. Teller. Computing the antipenumbra of an area light source. Comput. Graph., 26(4):139–148, July 1992.

    Google Scholar 

  19. S. Teller and P. Hanrahan. Global visibility algorithms for illumination computations. In Proc. SIGGRAPH '93, pages 239–246, 1993.

    Google Scholar 

  20. B. Zhu. Computational Geometry in Two and a Half Dimensions. PhD thesis, School of Computer Science, McGill University, Montreal, Canada, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ding-Zhu Du Ming Li

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, C., Zhu, B. (1995). Three dimensional weak visibility: Complexity and applications. In: Du, DZ., Li, M. (eds) Computing and Combinatorics. COCOON 1995. Lecture Notes in Computer Science, vol 959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030819

Download citation

  • DOI: https://doi.org/10.1007/BFb0030819

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60216-3

  • Online ISBN: 978-3-540-44733-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics