Skip to main content

The multi-weighted spanning tree problem

Extended abstract

  • Session 3A: Graph Algorithms
  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 959))

Included in the following conference series:

Abstract

Consider a graph in which each edge is associated with q weights. In this paper we discuss different aspects of the problem of minimizing the minimum-spanning-tree cost simultaneously with respect to the different weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Alexander and G. Robins, “A new approach to FPGA routing based on multiweighted graphs,” ACM/SIGDA International Workshop on Field-Programmable Gate Arrays (1994).

    Google Scholar 

  2. R. Chandrasekaran, “Minimum ratio spanning trees,” Networks 7 (1977) 335–342.

    Google Scholar 

  3. R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemerédi, “An optimal-time algorithm for slope selection,” SIAM J. Comput. 18(4) (1989) 792–810.

    Article  Google Scholar 

  4. J. Cong, A. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, “Provably good performance-driven global routing,” IEEE Trans. on CAD 11(6), (1992), 739–752.

    Google Scholar 

  5. J. R. Current, C. S. Revelle, and J. L. Cohon, “The hierarchical network design problem,” Eur. J. Oper. Res. 27 (1986) 55–67.

    Google Scholar 

  6. G. B. Dantzig, W. O. Blattner, and M. R. Rao, “Finding a cycle in a graph with minimum cost to time ratio with application to a ship routing problem”, Theory of Graphs, International Symposium, Gordon and Breach (1967) 77–84.

    Google Scholar 

  7. C. Duin and T. Volgenant, “Reducing the hierarchical network design problem,” Eur. J. Oper. Res. 39 (1989) 332–344.

    Article  Google Scholar 

  8. C. Duin and T. Volgenant, “The multi-weighted Steiner tree problem,” Ann. Oper. Res. 33 (1991) 451–469.

    Article  Google Scholar 

  9. H. H. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, “Efficient algorithms for finding minimum spanning trees in undirected and directed graphs,” Combinatorica 6(2) (1986) 109–122.

    Google Scholar 

  10. M. X. Goemans and D. P. Williamson, “A general approximation technique for constrained forest problems,” Proc. 3rd SODA (1992) 307–316.

    Google Scholar 

  11. M. J. Golin, C. Schwarz, and M. Smid, “Further Dynamic Computational Geometry”, Proc. Fourth Canad. Conf. Comp. Geom. (1992) 154–159.

    Google Scholar 

  12. M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman (1979).

    Google Scholar 

  13. D. Gusfield, “Bounds for the parametric minimum spanning tree problem,” Proc. West Coast Conf. Comb., Graph Theory and Comput., 173–181, 1980.

    Google Scholar 

  14. D. Gusfield, “Parametric combinatorial computing and a problem of program module distribution,” J. ACM 30(3) (1983) 551–563.

    Article  Google Scholar 

  15. R. Hassin and A. Tamir, “Maximizing classes of two-parameter objectives over matroids,” Math. Oper. Res. 14(2) (1989) 362–375.

    Google Scholar 

  16. R. M. Karp and J. B. Orlin, “Parametric shortest path algorithms with an application to cyclic staffing,” Disc. Appl. Math. 3 (1981) 37–45.

    Article  Google Scholar 

  17. N. Katoh, T. Tokuyama, and K. Iwano, “On minimum and maximum spanning trees of linearly moving points”, Proc. 33rd IEEE Symp. Found. Comput. Sci. (1992) 396–405.

    Google Scholar 

  18. S. Khuller, B. Raghavachari, N. Young, “Balancing minimum spanning and shortest path trees”, Third Symposium on Discrete Algorithms, 1993.

    Google Scholar 

  19. V. P. Kompella, J. C. Pasquale, and G. C. Polyzos, “Multicasting for Multimedia Applications,” Proc. of IEEE INFOCOM '92 (1992).

    Google Scholar 

  20. V. P. Kozyrev, “Finding spanning trees that are optimal with respect to several ranked criteria,” Combinatorial Analysis, No. 7 (1986) 66–73, 163–164.

    Google Scholar 

  21. E. L. Lawler, “Optimal cycles in doubly weighted directed linear graphs”, Theory of Graphs, International Symposium, Gordon and Breach (1967) 209–214.

    Google Scholar 

  22. H.-P. Lenhof, J. S. Salowe, and D. E. Wrege, “Two methods to mix shortest-path and minimum spanning trees,” (1993), manuscript.

    Google Scholar 

  23. J. Matoušek, “Approximations and optimal geometric divide-and-conquer,” Proc. Twenty-third ACM Symp. Theory Comput. (1991) 505–511.

    Google Scholar 

  24. N. Megiddo, “Combinatorial optimization with rational objective functions,” Math. Oper. Res. 4(4) (1979) 414–424.

    Google Scholar 

  25. N. Megiddo, “Applying parallel computation algorithms in the design of serial algorithms,” J. ACM 30(4) (1983) 852–865.

    Article  Google Scholar 

  26. R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, H. B. Hunt III, “Many birds with one stone: Multi-objective approximation algorithms,” Proc. 25th Symp. Theory Comput. (1993) 438–447.

    Google Scholar 

  27. G. Robins, personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ding-Zhu Du Ming Li

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganley, J.L., Golin, M.J., Salowe, J.S. (1995). The multi-weighted spanning tree problem. In: Du, DZ., Li, M. (eds) Computing and Combinatorics. COCOON 1995. Lecture Notes in Computer Science, vol 959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030828

Download citation

  • DOI: https://doi.org/10.1007/BFb0030828

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60216-3

  • Online ISBN: 978-3-540-44733-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics