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Abstract. We consider the problem of placing a specified number p of 
facilities on the nodes of a given network with two nonnegative edge- 
weight functions so as to  minimize the diameter of the placement with 
respect to  the fist  weight function subject to a diameter- or sum- 
constraint with respect to the second weight function. 
Define an (a,P)-approximation algorithm as a polynomial-time algo- 
rithm that produces a solution within a times the optimal value with 
respect to  the first weight function, violating the constraint with respect 
t o  the second weight function by a factor of at most p .  
We show that in general obtaining an (a, P)-approximation for any fixed 
a, fl2 1 is NP-hard for any of these problems. We also present efficient 
approximation algorithms for several of the probIems studied, when both 
edge-weight functions obey the triangle inequality. 

1 Introduction and Basic Definitions 

Several fundamental problems in location theory [HM79, MF901 involve finding 
a placement obeying certain “covering” constraints. Generally, the goal of such 
a location problem is to find a placement of minimum cost that satisfies all the 
specified constraints. The cost of a placement may reflect the price of construct- 
ing the network of facilities, or it may reflect the maximum communication cost 
between any two facilities. Examples of such cost measures are the total edge 
cost and the diameter respectively. 

Finding a placement of sufficient generality minimizing even one of these 
measures is often NF-hard [GJ79]. In practice, it is usually the case that a 
facility location problem involves the minimization of a certain cost measure, 
subject t o  budget constraints on other cost measures. 

The problems considered in this paper can be termed as compact location 
problems, since we will typically be interested in finding a “compact” placement 
of facilities. The following is a prototypical compact location problem: Given an 
undirected edge-weighted complete graph G = (V, Ec),  place a specifled number 
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p of facilities on the nodes of G, with at most one facility per node, so as to 
minimize some measure of the distances between facilities. This problem has 
been studied for both diameter and sum objectives WM+93]. Some geometric 
versions of this problem have also been studied [AI+91]. 

Consider the following extension of the compact location problem. Suppose 
we are given two weight-functions 6,, 6d on the edges of the network. Let the first 
weight function 6, represent the cost of constructing an edge, and let the second 
weight function dd represent the actual transportation- or communication-cost 
over an edge (once it has been constructed). Given such a graph, we can define a 
general bicriteria problem (A, B) by identifying two minimization objectives of 
interest from a set of possible objectives. A budget value is specified on the second 
objective B and the goal is to  find a placement of facilities having minimum 
possible value for the first objective A such that this solution obeys the budget 
constraint on the second objective. For example, consider the diameter-bounded 
minimum diameter compact location problem denoted by DC-MDP: Given an 
undirected graph G = (V, E )  with two different nonnegative integral edge weight 
functions 6, (modeling the building cost) and 6d (modeling the delay or the 
communication cost), an integer p denoting the number of facilities to be placed, 
and an integral bound B (on the total delay), h d  a placement ofp facilities with 
minimum diameter under the &-cost such that the diameter of the placement 
under the 6d-COsts [the maximum delay between any pair of nodes) is at most 
B. We term such problems as bicriteria compact location problems. 

In this paper, we study bicriteria compact location problems motivated by 
practical problems arising in diverse areas such as statistical clustering, pattern 
recognition, processor allocation and load-balancing. 

2 

Let G = (V,E,) be a complete undirected graph with n = IV( nodes and let 
p (2 5 p 5 n) be the number of facilities to be placed. We call any subset 
P V of cardinality p a placement. Given a nonnegative weight- or cost- 
function 6 : E, + $, we will use P,(P) to denote the diameter of a placement 
P with respect to  6; that is 

Preliminaries and Summary of Results 

Similarly, we will let &(P) 
in the placement P; that is 

denote the sum of the distances between facilities 

u,uEP 
UZ. 

We note that the average length of an edge in a placement P equals &&(P). 
As usual, we say that a nonnegative distance 6 on the edges of G satisfies 

the triangle inequality, if we have 

6(7J, 4 I 6(7J, 4 + 6(74 4 



for all w,w,u E V, 
The Minimum Diameter Placement Problem (denoted by MDP) is to find 

a placement P that minimizes DJ(P). Similarly, the Minimum Average Place- 
ment Problem (denoted by MAP) is to find a placement P such that s&') is 
minimized. Both problems are known to be NP-hard, even when the distance 
S obeys the triangle inequality @KM+93]. Moreover, if the distances are not 
required to satisfy the triangle inequality, then as observed in [FLKM+93], there 
can be no polynomial time relative approximation algorithm for MDP or MAP 
unless P = NP. 

In the sequel we will restrict ourselves to those instances of the problems 
where the weights on the edges obey the triangle inequality. Given a problem 
17, we use TI-17 to denote the problem 17 restricted to graphs with edge weights 
satisfying the triangle inequality. 

Following [HS86], the bottleneck graph bottleneck(G,6,A) of G = (V,Ec) 
with respect to 6 and a bound A is defined by 

bottleneck(G, 6, A) := (V, E'), where E' := (e E E, : d(e) 5 A}.  

We now formally define the problems studied in this paper. 

Definition 1. [Diameter Constrained Minimum Diameter Placement Problem 

An undirected complete graph G = (V,E,) with two nonnegative 
(DC- M D P) J 

Input: 

Output: A set P 2 V ,  with IPI = p ,  minimizing the objective 
weight functions d,, dd : E, + $, an integer 2 5 p 5 n and a number 0 E $. 

subject to the constraint 

DJ,(P) = max Bd(V,W) 5 R. 
u,w€P 

v f w  

Definition 2. [Sum Constrained Minimum Diameter Placement Problem (SC- 
M W I  

Input: 

Output: A set P C V, with IPI = p ,  minimiing the objective 

An undirected complete graph G = (V,Ec) with two nonnegative 
weight functions d,, dd : E, + $, an integer 2 5 p 5 n and a number 0 E $. 

and satisfying the budget-constra.int 

http://budget-constra.int


Let IT E {TI-DC-MDP, TI-SC-MDP}. Define an (a, /3)-approzi:imation algo- 
rithm for IT to  be a polynomial-time algorithm, which for any instance I of IT 
does one of the following: 

(a) It produces a solution within Q times the optimal value with respect to 
the first distance function (&), violating the constraint with respect to the 
second distance function (6d) by a factor of at most p. 

(b) It returns the information that no feasible placement exists at all. 

Notice that if there is no feasible placement but there is a placement violating 
the constraint by a factor of at most p, an (a, @-approximation algorithm has 
the choice of performing either action (a) or (b). 

In this paper we study the complexity and approximability of the prob- 
l e m  DC-MDP and SC-MDP. We show that, in general, obtaining an (a,/3)- 
approximation for any fixed a,P 2 1 is NP-hard for any of these problems. 
We also present efficient approximation algorithms for several of the problems 
studied, when both edgeweight functions obey the triangle inequality. For TI- 
DC-MDP problem, we provide a (2,2)-approximation algorithm. We also show 
that no polynomial time algorithm can provide an (a,2 - E)- or (2 - e,P)- 
approximation for any k e d  E > 0 and a,p 2 1, unless P = HP- This result 
is proved to remain true, even if one h e s  E' > 0 and allows the algorithm 
to place only 2~/lVl~/~-"' facilities. Our techniques can be extended to  devise 
approximation algorithms for TI-SC-MDP. For this problem, our heuristics pro- 
vide performance guarantees of (2 - 2/p, 2) and (2,2 - 2 / p )  respectively. These 
techniques can also be used to find efficient approximation algorithms for TI- 
DC-MDP and TI-SC-MDP when there are node and edge weights. Due to lack 
of space, the discussion on the node-weighted cases is omitted in this version of 
the paper. 

3 Related Work 

While there has been much work on finding minimum-cost networks (see for ex- 
ample [DF85, FG88, Go85, ICs-86, LV92, WonSol) for each of the cost measures 
considered in our bicriteria formulations, there has been relatively little work 
on approximations for multi-objective network-design. In this direction, Bar- 
Ilm and Peleg [BP91] considered balanced versions of the problem of assigning 
network centers, where a bound is imposed on the number of nodes that any ten- 
ter can service. Warburton [Wa87] has considered multi-objective shortest path 
problems. We refer the reader to [MR+95, RMRf93] for a detailed survey of the 
work done in the area of algorithms for bicriteria network design and location 
theory problems. Other researchers have addressed multi-objective approxima- 
tion algorithms for problems arising in areas other than network design. This 
includes research in the areas of computational geometry [AF+94], numerical 
analysis, network design [ABPSO, KRY93, Fig31 and scheduling [ST93]. 

Due to lack of space the rest of the paper consists of selected proof sketches. 



4 Diameter Constrained Problems 

As shown in [RKM+93], TI-MDP is NP-hard. Here we can extend this result to 
obtain the following non-approximability result. 

Proposition 3. Let E > 0 and E' > 0 be arbitrary. Suppose that A is a polyno- 
mial time algorithm that, given any instance of TI-DC-MDP, either returns a 
subse ts  c v of at least nodes satisfying D,(s) 5 (2-.5)R, or provides 
the information that no  placement of p nodes having communication diameter 
of at most R does exkit. Then P = NP. 0 

We can interchange the roles of 6, and 6d in the proof of the last proposition to  
show that the optimal value of the problem cannot be approximated by a factor 
of (2 - E). Moreover, replacing 2 by a suitable function f E 0(2Po1J'(lvI)), which 
given an input length of O(lVl) is polynomial time computable, it is easy to see 
that, if the triangle inequality is not required to hold, there can be no polynomial 
time approximation with performance ratio O(2Po1Y(IvI)) for neither the optimal 
function value nor the constraint (modulo P = NP). Thus we obtain: 

Lemma4. Unless P = NP,  for any fixed E > 0 and E' > 0 there can be 
no  polynomial time approximation algorithm for TI-DC-MDP that is required to 
place at least 2p/lVl'/"-"' facilities and has a performance guarantee of (CY, 2-E) 
or (2--~,p). If the triangle inequality is not required to hold, then the existence of 
a n  ( f( lV(),  g([Vl))-approximation algorithm for  any f, g E O(2po'y(lvl)) implies 
that P = NP. 0 

PROCEDURE HEU R-FOR-DIA 
1. 
2. 
3. 
4. 
5. 
6. 

7. 

G' := bottleneck(G, 6 d r  0) 
Vcand := {V E G' : deg(v) 2 p - 1) 
IF Vund = 0 THEN R E T U R N  ''certificate of failure" 
Let best := +ca 
Let Pbest := 0 
FOR each v E V w n d  Do 
(a) Let N(u) be the set of p - 1 nearest neighbors of v in G with respect to 6, 
(b) Let P(u) := N(v)  U {v }  
(C)  IF Ma,(P(v)) < best THEN &est := P ( V )  

best := Ma,(P(v)) 
OUTPUT Pbes t  

Fig. 1. Details of the heuristic for TI-DC-MDP and TI-DC-MAP 

Using the results in [FLKM+93] in conjunction with the results in [MR+95] 
we can devise an approximation algorithm with a performance guarantee (4,4) 



for TI-DC-MDP. Here we present an improved heuristic HEUR-FOR-DIA for this 
problem. This heuristic provides a performance guarantee of (2,2). In view of 
Lemma 4, this is the best approximation we can expect to obtain in polynomial 
time. The heuristic is quite simple. The details of the heuristic are shown in 
Figure 1. 

Theorem5. Let I be any instance of of TI-DC-MDP such that an optimal 
solution P* of diameter cost OPT(I) = V6,(P*) exists. Then the algorithm 
HEUR-FOR-DIA, called with M6, := V6dJ returns a placement P satisfying 
V&,(P) 5 2 0  and D6,(P)/OPT(I) 5 2. 

Proof: Consider an optimal solution P* such that DJ,(P*) 5 R. Then by defi- 
nition this placement forms a clique of size p in G’ := bottleneck(G, a d ,  n). Thus 
in this case Vcand is non-empty and the heuristic will not output a “certificate 
of failure”. 

Moreover, any placement P(v) considered by the heuristic will form a clique 
in (G‘)2. By the definition of G’ as a bottleneck graph with respect to  &, the 
bound 0 and by the assumption that edge weights obey triangle inequality, it 
follows that no edge e in (G‘)2 has weight &(e) more than 2 0 .  Thus every place- 
ment P(v) considered by the heuristic has communication diameter Va,(P(v)) 
no more than 20.  

Consider an arbitrary v E P*. Clearly w E Vcand .  Consider the step of the 
algorithm HEU-FOR-DIA in which it considers v. For any w E N(v)  we have 
S,(v,w) 5 OPT( I ) ,  by definition of N(v)  as the set of nearest neighbors of v 
and by the fact that every node from the optimal solution is adjacent to v in G’. 
Thus for w, w‘ E N(v)  we have &(w, 20’) 5 &(v, w) + &(v, w’) 5 20PT(I) by 
the triangle inequality. Consequently, VO,~(P(V))  = D 6 , ( N ( v ) ~ { v } )  5 20PT(I). 

Now, since the algorithm HEU-FOR-DIA chooses a placement with minimal 
diameter among all the placements produced, the claimed performance guarantee 
with respect to the cost diameter D6, follows. U 

5 Sum Constrained Problems 

Next, we study bicriteria compact location problems where the objective is to 
minimize the diameter D6d subject to budget-constraints of sum type. 

Again, it is not an easy task to find a placement P satisfying the budget- 
constraint or to determine that no such placement exists. Using a reduction from 
CLIQUE [GJ79] one obtains the following. 

Proposition6. If the distances &,& are not required to satisfy the triangle 
inequalityJ there can be no polynomial time (a, /?)-approximation algorithm for 
SC-MDP for any fixed a, /? 2 1, unless P = NP. Moreover, if there is a polyno- 
mial time (a,  1)-approximation algorithm for TI-SC-MDP for any fixed a! 2 1, 
then P = NP. 0 

We proceed to present a heuristic for TI-SC-MDP. The main procedure shown 
in Figure 2 uses the test procedure from Figure 3. 



PROCEDURE HEUR-FOR-SUM 
1. Sort the edges of G in ascending order with respect to 6d 
2. Assume now that &(el) 5 bd(e2) 5 - 0 -  5 &(e(,.)) 
3. Let Pbest :=“certificate of failure” 
4. i < = l  
5. Do 

(a) Gi := bottleneck(G, a d ,  &(e,)) 
(b) Pbest  := tat(Gi, bclGi, 0) 
(c) i : = i + l  

6. UNTIL Pbest # ‘kertificate of failure” 
7. OUTPUT Pbest 

Fig. 2. Generic bottleneck procedure 
~ ~~~~~~~~~~~~ 

PROCEDURE test(G, dl 0) 
1. V&d := {V E G : deg(v) 2 p - 1) 
2. IF V,nd = 0 THEN RETURN “certificate of failure’’ 
3. Let best := $00 
4. Let PbcsL := 0 
5. FOR each v E Vcand Do 

(a) Let N(u) be the set of p - 1 nearest neighbors of v in G with respect to 6 
(b) Let P(v)  := N(v)  U {v }  
(c) IF Sa(P(v)) < best THEN Pbest  := P(v)  

best := Sa(P(v)) 
6. IF best > (2 - 2/p)L? THEN RETURN “certificate of failure” 

ELSE RETURN &st 

Fig. 3. Test procedure used for TI-SC-MDP 

Lemma7. Let I be a n  instance of TI-SC-MDP such than there i s  an optimal 
placement P*. If the test procedure test(Gi, b,, Q) returns a “certificate of fad- 

O we”, then we have OPT(I) > bd(ei). 

Now we can establish the result about the performance guarantee of the 
heuristic: 

Theorem8. Let I denote any instance of TI-SC-MDP and assume that there 
is an optimal placement P* of diameter OpT(I) = Rbd(P*). Tilen HEUR-FOR- 
SUM with the test.procedure test returns aplacement P with &,(P) 6 (2 -2 /p )Q 
and Dal ( I ) /OPT(I )  5 2. 

Proof: Consider the case when bd(ei) = OPT(I). Since in Gi we have deleted 
only edges e having weight &(e) > OPT(I) and we assume that there is a 
feasible solution satisfying the budget-constraint, it follows that the bottleneck 
graph Gi must contain a clique C of size p such that Sa,(C) 5 0. 



. . _... 

For a node v E C let s, := &(v,'w)- 
tDEC 
w#* 

Then we have 
&(C> = s,. 

WEC 
Now let v E C be so that S, is a minimum among all nodes in C. Then clearly 

sac (C) 2 PS,. (1) 

By definition of the bottleneck graph Gi and the clique C, the node v must 
have degree at least p - 1 in Gi. Thus v is one of the nodes considered by the 
test procedure. Let N ( v )  be the set of p - 1 nearest neighbors of v in Gi. Then 
we have 

w € N ( u )  
W#U 

by definition of N(v)  as the set of nearest neighbors, P(v)  := N ( v )  U {w}.  Let 
'w E N ( v )  be arbitrary. Then 

Now using (3) and again (2) ,  we obtain 

= s, + (p - 2)S, t (p - 1)SU 

= (2p - 2)S, 

5 (2 - 2 / p ) O P T ( I ) .  
(1) 



Thus the placement P(v) violates the budget-constraint by a factor of at most 
2 - 2 /p .  Consequently, as the algorithm chooses the placement with Pbest with 
the least constraint-violation, it follows that the test-procedure called with Gi = 
bottleneck(G, &, OPT(1)) will not return a “certiticate of failure”. 

The placement Pbest that is produced by the algorithm turns into a clique 
in @. Thus the longest edge in the placement with respect t o  6 d  is at most 
2OPT(I). 
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