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Preface

Graph rewriting systems have come of age. In autumn 1994, the 25th anniversary of
the first publication in this area was celebrated at the 5th Workshop on Graph
Grammars and their Applications to Computer Science. In the interim, the subject has
evolved. The current situation can be described by a three-stage model. At the very
low level there is a common idea of graph rewriting as the basic mechanism, where a
graph is transformed by the application of a rewriting rule.

In the second stage, this mechanism is expressed in several ways. Usually, two so-
called approaches are distinguished: the algorithmic (or set-theoretic) and the
algebraic approach. Both provide a formalisation of graph rewriting. They give a
precise semantics to the idea of graph transformation and, hence, allow for a formal
treatment. In that sense, they are similar to the semantics of programming languages.

The upper stage is partitioned into several branches. At one extreme, theoretical
studies on the generational power, on semantic constructs, or on restricted formalisms
are undertaken. At the other extreme, specifications of real-world systems, or imple-
mentations of rewriting environments are developed. Because the individual problems
to solve are complicated enough, the branches are not very aware of each other.

The monograph builds bridges between various areas of interest: 1) it studies a class
of graph rewriting systems which is very suitable for an efficient execution; 2) it
presents a compilation approach to the implementation of an environment for graph
rewriting; 3) it develops an implementation of a functional programming language to
show that and how the presented ideas apply to real-world problems.

This publication is my dissertation which I submitted to the Fachbereich Mathe-
matik und Informatik at the Freie Universitit Berlin. It was finished in December
1994, and presents the results of the research carried out at the Institut fiir Informatik.
In that respect I would like to thank several people who accompanied my work. Prof,
Elfriede Fehr provided an excellent environment for my studies and gave me any
support I requested; Prof. Gregor Engels introduced me to graph rewriting and
encouraged my progress with valuable comments; the GraGra-AG, in particular Prof.
Hartmut Ehrig and Gabi Taenzer, provided a refuge from the graph rewriting
Diaspora; Prof. Rail Rojas posed the very question initiating the whole theoretical
consideration; Albert Zindorf and Andreas Schiirr provided me with the newest
versions of PROGRES and the additional information which was not included in the
documentation; my colleagues at work provided an important social background; Elke
Kasimir implemented most parts of the environment and was a very valuable critic;
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Peter Hofmann developed a compiler for functional languages based on the ideas
presented in Chapter 6; Gaye Rochow and John Kelly helped me by proof-reading the
manuscript to eliminate the mistakes made by a non-native speaker: Thanks to you all.

Berlin, April 1995 Heiko Dorr
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