Lecture Notes in Computer Science 922
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Advisory Board: W. Brauer D. Gries . Stoer

Heiko Dorr

Efficient Graph Rewriting
and Its Implementation

€ Springer

Series Editors

Gerhard Goos
Universitit Karlsruhe
Vincenz-Priessnitz-StraBe 3, D-76128 Karlsruhe, Germany

Juris Hartmanis
Department of Computer Science, Cornell University
4130 Upson Hall, Ithaca, NY 14853, USA

Jan van Leeuwen
Department of Computer Science, Utrecht University
Padualaan 14, 3584 CH Utrecht, The Netherlands

Author

Heiko Dorr
Institut fiir Informatik, Freie Universitit Berlin
Takustrasse 9, D-14195 Berlin, Germany

Library of Congress Cataloging-in-Publication Data. Dérr, Heiko, 1962~ Efficient
graph rewriting and its implementation/Heiko Dérr. p.cm. — (Lecture notes in com-
puter science; 922) Includes bibliographical references and index. ISBN 3-540-60055-8
(alk. paper). - ISBN 0-387-60055-8 (U.S.: alk. paper). 1. Rewriting systems (Com-
puter science) I. Title. II. Series.

QA267. D67 1995

005. 13’ 1-dc20 95-30326 CIP

CR Subject Classification (1991): F4.2,D.3.2, D.3.4, D.2.1

ISBN 3-60055-8 Springer-Verlag Berlin Heidelberg New York

CIP data applied for

This work is subject to copyright. All rights are reserved, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting,
re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in
any other way, and storage in data banks. Duplication of this publication or parts
thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be
obtained from Springer-Verlag. Violations are liable for prosecution under the
German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1995
Printed in Germany

Typesetting: Camera-ready by author
SPIN: 10485935 06/3142-543210 - Printed on acid-free paper

Preface

Graph rewriting systems have come of age. In autumn 1994, the 25th anniversary of
the first publication in this area was celebrated at the 5th Workshop on Graph
Grammars and their Applications to Computer Science. In the interim, the subject has
evolved. The current situation can be described by a three-stage model. At the very
low level there is a common idea of graph rewriting as the basic mechanism, where a
graph is transformed by the application of a rewriting rule.

In the second stage, this mechanism is expressed in several ways. Usually, two so-
called approaches are distinguished: the algorithmic (or set-theoretic) and the
algebraic approach. Both provide a formalisation of graph rewriting. They give a
precise semantics to the idea of graph transformation and, hence, allow for a formal
treatment. In that sense, they are similar to the semantics of programming languages.

The upper stage is partitioned into several branches. At one extreme, theoretical
studies on the generational power, on semantic constructs, or on restricted formalisms
are undertaken. At the other extreme, specifications of real-world systems, or imple-
mentations of rewriting environments are developed. Because the individual problems
to solve are complicated enough, the branches are not very aware of each other.

The monograph builds bridges between various areas of interest: 1) it studies a class
of graph rewriting systems which is very suitable for an efficient execution; 2) it
presents a compilation approach to the implementation of an environment for graph
rewriting; 3) it develops an implementation of a functional programming language to
show that and how the presented ideas apply to real-world problems.

This publication is my dissertation which I submitted to the Fachbereich Mathe-
matik und Informatik at the Freie Universitit Berlin. It was finished in December
1994, and presents the results of the research carried out at the Institut fiir Informatik.
In that respect I would like to thank several people who accompanied my work. Prof,
Elfriede Fehr provided an excellent environment for my studies and gave me any
support I requested; Prof. Gregor Engels introduced me to graph rewriting and
encouraged my progress with valuable comments; the GraGra-AG, in particular Prof.
Hartmut Ehrig and Gabi Taenzer, provided a refuge from the graph rewriting
Diaspora; Prof. Rail Rojas posed the very question initiating the whole theoretical
consideration; Albert Zindorf and Andreas Schiirr provided me with the newest
versions of PROGRES and the additional information which was not included in the
documentation; my colleagues at work provided an important social background; Elke
Kasimir implemented most parts of the environment and was a very valuable critic;

vi Preface

Peter Hofmann developed a compiler for functional languages based on the ideas
presented in Chapter 6; Gaye Rochow and John Kelly helped me by proof-reading the
manuscript to eliminate the mistakes made by a non-native speaker: Thanks to you all.

Berlin, April 1995 Heiko Dorr

Contents

1 Introduction

1.1

1.2

1.3

1.4

Graph Rewriting Everywhere? — The Purpose of Graph Rewriting

SYSIBIMS ..ottt ettt s st e e e e e e 1
The Major Flaw of Graph Rewriting - Its Complexitycccoevniiinnns 4
The Plan of Attack - Finding the Gapcocccvivieecerinrieriercceeee e 5
OULIING .ot e e 7

2 Graph Rewriting Systems — The Basic Concepts

2.1 Vertices, Edges, and Labels make a Graph — Preliminary
DefinitiONSceeiiiiie et 10

2.2 Algorithmic Graph Rewriting Systems — The Basic Formalism 13

2.3 An Abstract Machine for Labelled Subgraph Matchingc.c...... 24

2.4 Summary and Related WOrkccccocveiieriiiniiiincne e eea s 31

3 UBS-Graph Rewriting Systems — Matching Subgraphs in

Constant Time

3.1 Unique Labels — Singularities in Derived Graphsc.ccccceecvvevnennen. 38
3.1.1 Unique Vertex Labels ...t 38
3.1.2 Unique Edge Labelscccooeirceiiiiiiin i 43

3.2 Label Triples — Detecting Dead Rules and Saving Memory 47
3.2.1 Definition and Properties of Label Triplesccooeccrecrnnnncinnnn 47
3.2.2 Approximation of the Set of Label Triplesccevreivcoinnricinnn. 49

3.3 Strong V-Structures — The Branching Pointscoccciiiniieniininens 56
3.3.1 Strong V-Structures and Matching in Constant Timecccecoceeeeeees 58
3.3.2 Determination of a Bypassing Connected Enumeration 63
3.3.3 Conditions for the Introduction of Strong V-Structures 65
3.34 Approximation of the Set of Strong V-Structurescccocceeeieeeee. 81

3.4 Summary and Related Workcoovcveiiiiiiinciii s 85

viii

4 Programmed Attributed Graph Rewrite Systems —
An Advanced Modelling Formalism

4.1 Aftributed Graph Rewriting Systems — Extension |cccce e 92
411 The FOrmMalismccicieiiceriinieniiicrenneeser e sneesesneesneee 93
4.1.2 Application of the Analysescceccevivininniiiniinnininnnce 99

4.2 Programmed Graph Rewriting Systems — Extension Il 101
421 The SYNMAXcccociiiicersciinniciin e s e e sassane 105
422 The Failure SEmMantiCsc...ecvvrrirrcemrimniee st 106
423 The Collection SemMantiCscvcevrrierrrrrrrrerierrenseenreesnstrsesreseenens 110
4.2.4 Analysis of Further Control Structuresc.ceeevvrervnirccnnccnniennnnn. 114

4.3 Summary and Related WOrkScccceerrrrieinnieenseennnnessenesenescnesnnes 117

5 The Abstract Machine for Graph Rewriting — Supporting
a Fast Implementation

5.1 Optimization of the Application Test for Rule Setsccvvvreennee. 125

5.2 The Graph Rewriting Environmentcoccvvinennenecnnnnccnnnncenenn. 136
5.2.1 The State of the Core Abstract Machinecccoceceemienicncvrnncencn. 138
52.2 Matching INStructionscccceviviniiinnrnnncnms e 141
5.2.3 Structural Graph Updatescccoiiicrvrncnninnnnnnn. 145
5.24 Evaluation of Embedding Descriptionscccevieicencncniininenn, 146
5.2.5 Attribute Evaluationccccoceeveiiiininnincsssiinneecntesecseeeeens 147
5.2.6 Control INSIUCLIONSccoorvemreeciiriisenennrenessesesss i st eene 149

5.3 Code Generation for the Abstract Machineccocvcrerirerecencnnnns 149
5.3.1 The SYNAX ..ccecviiviiieniirrrerirrnecrert et sereessesssesssessensnesseesaessnesseas 150
5.3.2 The Code Generation RUIEScccoeercriviecciniinicnirnsesiieineeenes 152

5.4 Improvements by Rule Set Optimizationccccceceinnnnninnnnin 157

5.5 Summary and Related WOrkc.ccccoviiivemninncn e 160

6 A Graphical Implementation of Functional Languages —

A Case Study in UBS-Graph Rewriting Systems

6.1 Aspects of Functional Programmingccccecveenniniiicniennnncnnincnns 165

6.2 Translating Functions to Trees — Graph Reduction approaches
Graph REWIIHINGcoceeiriireeeececeniicc ettt 168
6.2.1 A Graphical Notation for Functional Expressionsc..cccceurunue. 168
6.2.2 Function Definitions as Rewriting Rulesccccovecmriernvrnnenee. 170
6.2.3 Translating EXpressionscccccecimienrccersensncsnssnnses s 171
6.2.4 Translating Function Definitionsccccvevevcercmnvcmnnennnnninnnsennnne 176

6.3 Sharing — Graph Reduction Meets Graph Rewritingccoccvunes 181
6.4 Normal Order Reduction — Enforcing a Deterministic Evaluation
1O 1« 1= OSSP PR PRSI 185
6.4.1 A Stack of Spine POINerscccoeerrvciriierrccnineicnnrecnter e 187
6.4.2 Deconstruction of the Spine Stackccccvvcnniicnnniiccenncnenene, 191
6.4.3 Unwinding the SPiNecccccvriieeriiecececeeer e ree e e 192
6.5 The Printing Mechanism ...t e 197
6.6 The Translation of Lazy Evaluation is UBSc.ccccciniiinineenen. 201
6.6.1 A Mandatory Set of Prohibited Strong V-Structures.......cccceceeenneee. 202
6.6.2 None of the Prohibited Strong V-Structures Occurcccovuvreeeneee 206
6.7 Summary and Related Work ... 213
7 CoNCIUSIONSooiiiiiiiicre ettt e sre e 217
Appendix A List of Figures and Tablesccccoccecvrviiciiniiiiec s inieeeeens 223
Appendix B Implementation of a Functional Programccccceeeveneen. 225
Appendix C Referencesccccoiiei i, 255

AppendiX D INAEX ..o e 261

