Skip to main content

Two-way automata with multiplicity

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 443))

Included in the following conference series:

Abstract

We introduce the notion of two-way automata with multiplicity in a semiring. Our main result is the extension of Rabin, Scott and Shepherdson's Theorem to this more general case. We in fact show that it holds in the case of automata with multiplicity in a commutative semiring, provided that an additional condition is satisfied. We prove that this condition is also necessary in a particular case. An application is given to zig-zag codes using special two-way automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. M. Anselmo, Automates et codes zig-zag, to appear in RAIRO-Informatique Théorique; and tech. report LITP no 88-74, Novembre 1988

    Google Scholar 

  2. M. Anselmo, Sur les codes zig-zag et leur décidabilité, to appear in TCS; and tech. report LITP no 89-36, Mai 1989

    Google Scholar 

  3. M. Anselmo, Sur la rationalité de la série des zig-zag et des séries reconnues par les automates bilatères, tech. report LITP no 89-61, Juillet 1989

    Google Scholar 

  4. M. Anselmo, The zig-zag power-series: a two-way version of the star operator, to appear in TCS, special edition

    Google Scholar 

  5. M. Anselmo, Automates bilatères et codes zig-zag, thèse de doctorat, Université Paris 7 (1990); tech. rep. LITP no 90-27 Mars 1990

    Google Scholar 

  6. M. Anselmo, Two-way Reading on Words, submitted to IMYCS 90

    Google Scholar 

  7. J. Berstel-D.Perrin, Theory of codes, Academic Press (1985)

    Google Scholar 

  8. J.Berstel-C.Reutenauer, Les séries rationnelles et leur languages, Masson (1984)

    Google Scholar 

  9. J.C. Birget, Concatenations of Inputs in a Two-way Automaton, Technical Report no 46, Dept. of Computer Science, U. of Nebraska, Lincoln (April 1987)

    Google Scholar 

  10. J.C. Birget, Two-way Automaton Computations, Technical Report no60, Dept. of Computer Science, U. of Nebraska, Lincoln (July 1987); and to appear in RAIRO-Informatique Théorique

    Google Scholar 

  11. S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press (1974)

    Google Scholar 

  12. J.E. Hopcroft-J.D.Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley (1979)

    Google Scholar 

  13. G. Hotz-K. Estenfeld, Formale Sprachen, Bibliographisches Institut, Mannheim (1981)

    Google Scholar 

  14. S. C. Kleene, Representation of events in nerve nets and finite automata, in C. E. Shannon, J. McCharty (eds.) "Automata Studies", Princeton N. J. 1956, 3–40

    Google Scholar 

  15. M. Nivat-D. Perrin, Ensembles reconnaissables de mots biinfinis, Can. J. Math., Vol. XXXVIII, no 3, 1986, pp. 513–537

    Google Scholar 

  16. J.P. Pécuchet, Automates boustrophédons, langages reconnaissables de mots infinis et variétés de semi-groupes (thèse d'Etat) LITP Mai 1986; and in Automates boustrophédons, semi-groupe de Birget et monoïde inversif libre, RAIRO Informatique Théorique, 19, no 1, 1985 pp 17–100.

    Google Scholar 

  17. D. Perrin, Automates avec multiplicités, tech. report LITP no88-42, Mai 1988

    Google Scholar 

  18. M. O. Rabin-D. Scott, Finite Automata and their Decision Problems, IBM J. Res. Dev., 3, no2 (1959) 114–125; and in E.F. Moore (editor), "Sequential Machines: Selected Papers", Addison-Wesley (1964).

    Google Scholar 

  19. M.P. Schützenberger, On the definition of a family of automata, Information and Control vol. 4, pp 245–270 (1961)

    Google Scholar 

  20. M.P. Schützenberger, On a theorem of R. Jungen, Proc. Amer. Math. Soc., vol. 13, pp 885–889 (1962)

    Google Scholar 

  21. M.P.Schützenberger, Certain elementary families of automata, Proc. Symposium on Math. th. of Automata, Polytechnic Institute of Brooklyn, pp 139–153 (1962)

    Google Scholar 

  22. J.C.Shepherdson, The reduction of two-way automata to one-way automata, IBM J. Res.3, 2 (1959), 198–200; and in E.F. Moore (editor), "Sequential Machines: Selected Papers", Addison-Wesley (1964).

    Google Scholar 

  23. M. Y. Vardi, A Note on the Reduction of Two-way Automata to One-way Automata, Information Processing Letters 30, pp 261–264 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael S. Paterson

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anselmo, M. (1990). Two-way automata with multiplicity. In: Paterson, M.S. (eds) Automata, Languages and Programming. ICALP 1990. Lecture Notes in Computer Science, vol 443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032024

Download citation

  • DOI: https://doi.org/10.1007/BFb0032024

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52826-5

  • Online ISBN: 978-3-540-47159-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics