Abstract
The simultaneous analysis of quantitative and qualitative variables is not an easy task in general. When a linear model is appropriate, the Generalized Linear Models are commonly used with success. But when the intrinsic structure of the data is not at all linear, they give very poor and confusing results. In this paper, we extensively study how to use the (non linear) Kohonen maps to solve some of the interesting problems which are encountered in data analysis: how to realize a rapid and robust classification based on the quantitative variables, how to visualize the classes, their differences and homogeneity, how to cross the classification with the remaining qualitative variables to interpret the classification and put in evidence the most important explanatory variables.
Preview
Unable to display preview. Download preview PDF.
References
T.W.Anderson, An introduction to multivariate statistical analysis, Wiley, 2nd ed., New York, 1984.
F.Blayo P.Demartines, Data analysis: how to compare Kohonen neural networks to other techniques ?, In Proceedings of IWANN'91, Springer, p. 469–476, 1991.
M.Cottrell, J.C.Fort, Etude d'un algorithme d'auto-organisation, Annales de l'Institut Poincaré, Vol. 23, 1, 1–20, 1987.
M.Cottrell, P.Letremy, E.Roy, E., Analysing a Contingency Table with Kohonen Maps: a Factorial Correspondence Analysis, Proceedings of IWANN'93, Springer Verlag, p. 305–311, 1993.
M.Cottrell, J.C.Fort, G.Pagès, Two or three things that we know about the Kohonen algorithm, in Proc of ESANN'94, M. Verleysen Ed., D Facto, Bruxelles, p.235–244, 1995.
M.Cottrell, S. Ibbou, Multiple Correspondence Analysis of a crosstabulations matrix using the Kohonen algorithm, in Proc of ESANN'95, M. Verleysen ED, D Facto, Bruxelles, p. 27–32, 1995.
M.Cottrell, B.Girard, Y. Girard, C.Muller and P.Rousset, Daily Electrical Power Curves: Classification and Forecasting Using a Kohonen Map, From Natural to Artificial Neural Computation, Proc. IWANN'95, Springer, p. 1107–1113,1995.
M.Cottrell, B.Girard, Y.Girard, M.Mangeas, Neural Modeling for Time Series: A Statistical Stepwise Method for Weight Elimination, IEEE Tr. on Neural Networks, Nov. 1995, Vol. 6, No 6, p. 1355–1364, 1995.
M.Cottrell, E.de Bodt, A Kohonen Map Representations to Avoid Misleading Interpretations, in Proc of ESANN'96, M. Verleysen Ed., D Facto, Bruxelles, p. 103–110, 1996.
A.Dempster, N.Laird, D.Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy Stat. Soc., B39, p. 1–38, 1977.
A.Eydoux, D.Wuhl, Traitement statistique et économétrique des données ANPE sur le chômage et les activités réduites, Technical Report, Université Paris 1, 1996.
F.Gardes, P.Gaubert, P.Rousset, Cellulage de données d'enquêtes de consommation par une méthode neuronale, Preprint SAMOS #69, 1997.
P.Gaubert, S.Ibbou, C.Tutin, Housing market segmentation and price mechanisms in the Parisian metropolis, International Journal of Urban and Regional Research, to appear, 1995.
T.Kohonen,. Self-organization and Associative Memory, 3∘ed., Springer, 1993.
T.Kohonen, Self Organizing Maps, Springer Series in Information Sciences Vol 30, Springer, 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cottrell, M., Rousset, P. (1997). The Kohonen algorithm: A powerful tool for analysing and representing multidimensional quantitative and qualitative data. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032546
Download citation
DOI: https://doi.org/10.1007/BFb0032546
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63047-0
Online ISBN: 978-3-540-69074-0
eBook Packages: Springer Book Archive