Skip to main content

The Kohonen algorithm: A powerful tool for analysing and representing multidimensional quantitative and qualitative data

  • Methodology for Data Analysis, Task Selection and Nets Design
  • Conference paper
  • First Online:
Biological and Artificial Computation: From Neuroscience to Technology (IWANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1240))

Included in the following conference series:

  • 281 Accesses

Abstract

The simultaneous analysis of quantitative and qualitative variables is not an easy task in general. When a linear model is appropriate, the Generalized Linear Models are commonly used with success. But when the intrinsic structure of the data is not at all linear, they give very poor and confusing results. In this paper, we extensively study how to use the (non linear) Kohonen maps to solve some of the interesting problems which are encountered in data analysis: how to realize a rapid and robust classification based on the quantitative variables, how to visualize the classes, their differences and homogeneity, how to cross the classification with the remaining qualitative variables to interpret the classification and put in evidence the most important explanatory variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.W.Anderson, An introduction to multivariate statistical analysis, Wiley, 2nd ed., New York, 1984.

    Google Scholar 

  2. F.Blayo P.Demartines, Data analysis: how to compare Kohonen neural networks to other techniques ?, In Proceedings of IWANN'91, Springer, p. 469–476, 1991.

    Google Scholar 

  3. M.Cottrell, J.C.Fort, Etude d'un algorithme d'auto-organisation, Annales de l'Institut Poincaré, Vol. 23, 1, 1–20, 1987.

    Google Scholar 

  4. M.Cottrell, P.Letremy, E.Roy, E., Analysing a Contingency Table with Kohonen Maps: a Factorial Correspondence Analysis, Proceedings of IWANN'93, Springer Verlag, p. 305–311, 1993.

    Google Scholar 

  5. M.Cottrell, J.C.Fort, G.Pagès, Two or three things that we know about the Kohonen algorithm, in Proc of ESANN'94, M. Verleysen Ed., D Facto, Bruxelles, p.235–244, 1995.

    Google Scholar 

  6. M.Cottrell, S. Ibbou, Multiple Correspondence Analysis of a crosstabulations matrix using the Kohonen algorithm, in Proc of ESANN'95, M. Verleysen ED, D Facto, Bruxelles, p. 27–32, 1995.

    Google Scholar 

  7. M.Cottrell, B.Girard, Y. Girard, C.Muller and P.Rousset, Daily Electrical Power Curves: Classification and Forecasting Using a Kohonen Map, From Natural to Artificial Neural Computation, Proc. IWANN'95, Springer, p. 1107–1113,1995.

    Google Scholar 

  8. M.Cottrell, B.Girard, Y.Girard, M.Mangeas, Neural Modeling for Time Series: A Statistical Stepwise Method for Weight Elimination, IEEE Tr. on Neural Networks, Nov. 1995, Vol. 6, No 6, p. 1355–1364, 1995.

    Google Scholar 

  9. M.Cottrell, E.de Bodt, A Kohonen Map Representations to Avoid Misleading Interpretations, in Proc of ESANN'96, M. Verleysen Ed., D Facto, Bruxelles, p. 103–110, 1996.

    Google Scholar 

  10. A.Dempster, N.Laird, D.Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy Stat. Soc., B39, p. 1–38, 1977.

    Google Scholar 

  11. A.Eydoux, D.Wuhl, Traitement statistique et économétrique des données ANPE sur le chômage et les activités réduites, Technical Report, Université Paris 1, 1996.

    Google Scholar 

  12. F.Gardes, P.Gaubert, P.Rousset, Cellulage de données d'enquêtes de consommation par une méthode neuronale, Preprint SAMOS #69, 1997.

    Google Scholar 

  13. P.Gaubert, S.Ibbou, C.Tutin, Housing market segmentation and price mechanisms in the Parisian metropolis, International Journal of Urban and Regional Research, to appear, 1995.

    Google Scholar 

  14. T.Kohonen,. Self-organization and Associative Memory, 3∘ed., Springer, 1993.

    Google Scholar 

  15. T.Kohonen, Self Organizing Maps, Springer Series in Information Sciences Vol 30, Springer, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Roberto Moreno-Díaz Joan Cabestany

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cottrell, M., Rousset, P. (1997). The Kohonen algorithm: A powerful tool for analysing and representing multidimensional quantitative and qualitative data. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032546

Download citation

  • DOI: https://doi.org/10.1007/BFb0032546

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63047-0

  • Online ISBN: 978-3-540-69074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics