Abstract
The use of automatic visual field classification with Artificial Neural Network (ANN) is presented. This classification is made with the purpose of helping ophthalmologist to know the possible existence of incipient glaucoma.
Various criterion's of inclusion and exclusion are set up for the patient selection. The training file is composed by 180 patterns of campimetries, and the test file by 48 patterns. In both patterns set there are visual fields of patients without any kind of pathology, and pathological visual fields: glaucoma, cataract, diabetic rethinopaty and hipertensive rethinopaty.
This work has three stages: the first stage sets up three classes: Normal, Glaucoma and Other Pathologies. The second stage sets up two classes: Glaucoma and Without Glaucoma. And the third stage sets up same classes as the second stage uses one ANN and the third stage uses two ANNs. All the ANNs used are feedforward type, and they are trained by means of backpropagation algorithm.
At the end of this document, the three stages are compared. For this purpose we study sensibility and specificity indexes, and the ratio of success and failure classifications.
Preview
Unable to display preview. Download preview PDF.
References
Alfonso Antón López: Valor de las Redes Neuronales y la discrimination logística en el análisis de los defectos del campo visual, Tesis Doctoral, Facultad de Medicina, Universidad de Valladolid, 1995.
Senén Barro, José Mira: Computation Neuronal, Servicio de Publications e intercambio Científico, Universidade de Santiago de Compostela, 1995.
B. Müller, J. Reinhardt: Neural Networks. An Introduction, Springer-Verlang, Berlin, 1991.
Timothy Masters: Practical Neural Networks. Recipes in C++, Academic Press Inc., San Diego, 1993.
Murray Smith: Neural Networks for Statistical Modeling, Van Nostrans Reinhold, New York, 1993.
Stuttgart Neural Network Simulator. User Manual, Version 4.0, Report No. 6/95,Institute for Parallel and Distributed High Performance Systems (IPVR), University of Stuttgart.
Goldbaum MH, Sample PA, White H, Côté B, Raphaelian P, Fechtner RD, Weinreb RN. “Interpretation of automated perimetry for glaucoma by neural network”. Invest. Ophthalmol Vis Sci 35: 3362–3373, 1994.
Aguayo R. “Aplicación de Redes Neuronales a la Detection del Glaucoma”. Actas I Reunión ECLA005. Junio 1994. Valladolid. Spain.
Asman P, Heijl A. (1992) “Glaucoma hemifield test. Automated visual field examination”. Arch Ophthalmol 110: 812–819.
Asman P, Heijl A. (1993) “Arcuate cluster analysis in glaucoma perimetry”. Journal of Glaucoma 2(1): 13–20.
Mandava S, Caprioli J, Zulauf M. (1992) “Glaucoma pattern index to quantify glaucomatous visual field loss”. Journal of Glaucoma 1: 178–183.
Hirsbrunner HP, Fankhauser F, Jenni A, Funkhauser A. (1990) “Evaluating a perimetric expert system: experience with Octosmart”. Graefe's Arch Clin Exp Ophthalmol 228: 237–241.
Hirsbrunner HP, Fankhauser F, Funkhauser, Jenni A. (1990) “Evaluating human and automated interpretation of visual field data in perimetry”. Jpn J Ophthalmol 34: 72–80.
Kaufmann H, Flammer J, Rutishauser C. (1990) Evaluation of visual field by ophthalmologists and by Octosmart Program. 201: 104.109.
Zeyen TG, Zulauf M, Caprioli J. “Priority of test locations for automated perimetry”. Ophthalmology 1993; 100:518–23.
Anton A, JA Maquet, A Mayo, J Tapia, JC Pastor. “Evaluation of logistic discriminant analysis for interpreting visual field defects”. Ophthalmology (in press).
Katz J, Sommer A, Gaasterland DE, Anderson DR. “Comparison of analytic algorithms for detecting glaucomatous visual field loss”. Arch Ophthalmol 1991; 109: 1684–89.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de los Mozos, M.R., Valderrama, E., Villa, R., Roig, J., Antón, A., Pastor, J.C. (1997). Detection of Glaucoma by means of ANNs. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032559
Download citation
DOI: https://doi.org/10.1007/BFb0032559
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63047-0
Online ISBN: 978-3-540-69074-0
eBook Packages: Springer Book Archive