Skip to main content

Structure-adaptable neurocontrollers: A hardware-friendly approach

  • Neural Networks for Communications, Control and Robotics
  • Conference paper
  • First Online:
Biological and Artificial Computation: From Neuroscience to Technology (IWANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1240))

Included in the following conference series:

Abstract

This paper presents a hardware-friendly approach for adapting the structure of a reinforcement, learning-based neurocontroller. An unsupervised clustering algorithm is used to partition the state space of a system and to adapt the size of its reinforcement module. In the wellknown inverted pendulum problem, the system has proven to be much faster than previous neurocontroller approaches. We are currently working on an implementation of the system using field-programmable logic devices.

A. Pérez-Uribe is supported by the Centre Suisse d'électronique et Microtechnique CSEM, Neuchâtel, Switzerland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. E. Alpaydin. Neural Models of Incremental Supervised and Unsupervised Learning. PhD thesis, Swiss Federal Institute of Technology, Lausanne, 1990. These 863.

    Google Scholar 

  2. E. Alpaydin. GAL:networks that grow when they learn and shrink when they forget. Technical Report TR-91-032, Int. Computer Science Institute, Berkeley, CA, 1991.

    Google Scholar 

  3. K. Balakrishnan. Evolutionary design of neural architectures — a preliminary taxonomy and guide to literature. Technical Report CS-TR-95-01, Department of Computer Science, Iowa State University, Ames, USA, Jan. 1995.

    Google Scholar 

  4. A. Barto, R. Sutton, and C. Anderson. Pole-balancing simulator and controller. http://envy.cs.umass.edu/People/sutton/RL-software.html.

    Google Scholar 

  5. A. Barto, R. Sutton, and C. Anderson. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man and Cybernetics, 13(5):834–846, 1983.

    Google Scholar 

  6. H. Berenji and P. Khedkar. Learning and tuning Fuzzy Logic controllers through reinforcements. In IEEE-Transactions on Neural Networks, pages 724–740, September 1992.

    Google Scholar 

  7. J. del R. Millan. Rapid, safe, and incremental learning of navigation strategies. In IEEE Transactions on Systems, Man and Cybernetics, pages 408–420, June 1996.

    Google Scholar 

  8. G. Edelman. Group selection and phasic reentrant signaling: A theory of higher brain function. In The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function, MIT Press, 1978.

    Google Scholar 

  9. P. D. Hortensius, R. D. McLeod, and H. C. Card. Parallel random number generation for VLSI systems using cellular automata. IEEE Transactions on Computers, 38(10):1466–1473, October 1989.

    Google Scholar 

  10. P. D. Hortensius, R. D. McLeod, W. Pries, D. M. Miller, and H. C. Card. Cellular automata-based pseudorandom number generators for built-in self-test. IEEE Transactions on Computer-Aided Design, 8(8):842–859, August 1989.

    Google Scholar 

  11. I-CUBE,Inc. I-CUBE. The FPID Family Data Sheet, 2.0 edition, May 1994.

    Google Scholar 

  12. B. Krose and J. van Dam. Adaptive state space quantization for reinforcement learning collision-free navigation. In Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1327–1332, 1992.

    Google Scholar 

  13. C.-J. Lin and C.-T. Lin. Reinforcement learning for an ART-based Fuzzy adaptive learning control network. IEEE Transactions on Neural Networks, 7(3):709–731, 1996.

    Google Scholar 

  14. Y. Liu and X. Yao. Evolutionary design of artificial neural networks with different nodes. In Proceedings of IEEE Third International Conference on Evolutionary Computation (ICEC'96), pages 670–675, 1996.

    Google Scholar 

  15. J. M. Moreno. VLSI Architectures for Evolutive Neural Models. PhD thesis, Universitat Politecnica de Catalunya, Barcelona, 1994.

    Google Scholar 

  16. D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning through symbiotic evolution. In Machine Learning, volume 22, Kluwer Academic Publishers, 11–33 (1996).

    Google Scholar 

  17. E. Mosanya, M. Goeke, J. Linder, J.-Y. Perrier, F. Rampogna, and E. Sanchez. A platform for co-design and co-synthesis based on FPGA. In Proceedings of the 7th IEEE International Workshop on Rapid System Prototyping, pages 11–16, 1996.

    Google Scholar 

  18. S. Nolfi, D. Parisi, and J. L. Elman. Learning and evolution in neural networks. Adaptive Behavior, 3(1):5–28, 1994.

    Google Scholar 

  19. A. Perez and E. Sanchez. FPGA implementation of an adaptable-size neural network. In Proceedings of the International Conference on Artificial Neural Networks ICANN96, Springer Verlag, July 1996.

    Google Scholar 

  20. A. Perez and E. Sanchez. Neural networks structure optimization through on-line hardware evolution. In Proceedings of the World Congress on Neural Networks WCNN96, INNS Press, September 1996.

    Google Scholar 

  21. G. Schram, B. Krose, R. Babuska, and A. Krijgsman. Neurocontrol by reinforcement learning. Journal A (Journal on Automatic Control), 37(3):59–64, 1996.

    Google Scholar 

  22. S. M. Trimberger. Field-Programmable Gate Array Technology. Kluwer Academic Publishers, Boston, 1994.

    Google Scholar 

  23. B. Widrow and F. Smith. Pattern-recognizing control systems. In Proceedings of the 1963 Computer and Information Sciences (COINS) Symposium, pages 288–317, Washington D.C, 1964.

    Google Scholar 

  24. X. Yao. Evolutionary artificial neural networks. International Journal of Neural Systems, 4(3):203–222, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Roberto Moreno-Díaz Joan Cabestany

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez-Uribe, A., Sanchez, E. (1997). Structure-adaptable neurocontrollers: A hardware-friendly approach. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032585

Download citation

  • DOI: https://doi.org/10.1007/BFb0032585

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63047-0

  • Online ISBN: 978-3-540-69074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics