Skip to main content

Generation of structured process models using Genetic Programming

  • Conference paper
  • First Online:
Evolutionary Computing (AISB EC 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1143))

Included in the following conference series:

Abstract

The design of structured mathematical models of processes in a certain level of abstraction defined by the given task appears to be difficult and time consuming even for experienced experts.

This paper reports on a new method for the design of structured process models based on the metaphor of Genetic Programming. This new methodology allows the automatic generation of non-linear process models in a self-organizing way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bettenhausen, K.D., Marenbach, P., Freyer, S., Rettenmaier, H. andNieken, U.: Self-organizing structured modelling of a biotechnological fed-batch fermentation by means of genetic programming. First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, 12–14 September 1995, Conference Publication No. 414, pp. 481–486, 1995.

    Google Scholar 

  2. Fonseca, C. M. and Fleming P. J.: Genetic Algorithms for Multiple Objective Optimization: Formulation, Discussion and Generalization. Proceedings of the Fifth International Conference on Genetic Algorithms and their Application, pp. 416–423, San Mateo, California, USA: Morgan Kaufmann Publishers, 1993.

    Google Scholar 

  3. Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Mass.: Addison-Wesley, 1989.

    Google Scholar 

  4. Hooke, R. and Jeeves, T.A.: Direct search: Solution of numerical and statistical problems. Journal of the Association of Computing Machinery, pp. 212–224, 1961.

    Google Scholar 

  5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press: Cambridge, Massachusetts, 1992.

    Google Scholar 

  6. Marenbach, P., Bettenhausen, K.D. and Cuno, B.: Selbstorganisierende Generierung strukturierter Prozeßmodelle. at-Automatisierungstechnik 6 (1995), pp. 277–288, Berlin, 1995.

    Google Scholar 

  7. Pohlheim, H.: Ein genetischer Algorithmus mit Mehrfachpopulationen zur Numerischen Optimierung, at-Automatisierungstechnik 3 (1995), pp. 127–135, Berlin, 1995.

    Google Scholar 

  8. Schwefel, H.-P.: Numerical optimization of computer models. Chichester: Wiley & Sons, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terence C. Fogarty

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pohlheim, H., Marenbach, P. (1996). Generation of structured process models using Genetic Programming. In: Fogarty, T.C. (eds) Evolutionary Computing. AISB EC 1996. Lecture Notes in Computer Science, vol 1143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032776

Download citation

  • DOI: https://doi.org/10.1007/BFb0032776

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61749-5

  • Online ISBN: 978-3-540-70671-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics