
On Automatic Loop Data-Mapping

 for Distributed-Memory Multiprocessors *

J. Torres, E. Ayguadé, J. Labarta, J. M. Llaberia and M.Valero

Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya

c/ Sor Eulalia de Anzizu, Mòdul D4. 08034 - Barcelona. SPAIN

e_mail : torres@ac.upc.es

Abstract

In this paper we present a unified approach for compiling programs for Distributed-Memory Multiprocessors (DMM). Parallelization
of sequential programs for DMM is much more difficult to achieve than for shared memory systems due to the exclusive local
memory of each Virtual Processor (VP). The approach presented distributes computations among VPs of the system and maps
data onto their private memories. It tries to obtain maximum parallelism out of DO loops while minimizing interprocessor
communication.

The method presented, which is named Graph Traverse Scheduling (GTS), is considered in this paper for single-nested

loops including one or several recurrences. In the parallel code generated, dependences included in a hamiltonian recurrence that
involves all the statements of the loop are enforced by the sequential execution of the computation assigned to each VP. Other
dependences not included in the hamiltonian recurrence and involving data mapped onto different VPs will need explicit
communication and synchronization.

1. INTRODUCTION

Parallelizing compilers exist today for high performance parallel computers in order to efficiently execute
sequential programs written in conventional languages such as Fortran and C. These compilers mainly
examine DO loops trying to obtain parallel code semantically equivalent to the original sequential one. DO

loops offer a great amount of potential parallelism in numerical programs. Such parallelizing compilers
perform the restructuring process based on dependence analysis for subscripted variables within the scope
of each loop. Such dependences impose an execution order of the statements involved that must be
preserved in the parallel code generated.

Most of the work on parallelizing compilers has been done for shared-memory multiprocessors
[PGHL89, AlKe87]. On the other hand, few works have been presented in the literature for partitioning DO

loops into computations well-suited for DMM systems [RaSa89]. In this case, it is necessary to automatically
distribute computations and data among processors trying to maximize the parallelism obtained with a good
load-balance over time while minimizing the amount of interprocessor communication required.

Other approaches try to extend a programming language with directives that control the mapping of
variables to local memories [CaKe88, KeZi89, Tsen89]. The compiler automatically tries to perform a task
partitioning assuming the data partitioning specified by the user. It also inserts all message-passing
communication that is required to maintain the semantics of the original sequential program. Optimizing
communication by message fussion is vital for obtaining efficient parallel programs [Gern90].

Another approach is to systematically map systolizable problems onto DMM [IbSo89, FLNV91]. The
systolic algorithm derived from the specification of the problem is partitioned in order to adapt it to the size
of the available DMM. The systolic algorithm is also increased in granularity in order to reduce
communication overhead.

* This work has been supported by the Ministry of Education of Spain (CICYT) in program TIC 299/89 and 392/89

Torres, J. [et al.]. On automatic loop data-mapping for distributed-memory multiprocessors. A: European Distributed Memory Computing
Conference. "Distributed memory computing: 2nd European Conference, EDMCC2 Munich, FRG, April 22-24, 1991: proceedings". Berlín:
Springer, 1991, p. 173-182. ISBN 978-3-540-46478-5. The final authenticated version is available online at https://doi.org/10.1007/BFb0032934

In this paper we describe GTS as a method for partitioning recurrences included in single-nested loops
and generating code well-suited for DMM systems. The extension to the multiple-nested loop case can be
found in [TALL90] and is not included in this paper for space reasons.

First GTS partitions the bounded statement per iteration space in threads in order to obtain maximum
parallelism. Each thread consists of a set of points of the space linked by a dependence chain. Each thread
will be executed as a task in a VP of the DMM system. The partitioning step assumes the existence of a
hamiltonian recurrence in the dependence graph that generates the set of threads. Such hamiltonian
recurrence involves all loop statements. If not present, one must be obtained by adding dummy dependences
that do not limit the parallelism of the loop. The method proposed obtains a fully independent partition when
a single hamiltonian recurrence appears in the dependence graph.

After that, referenced array elements are mapped onto private memories based on the distribution of
computations between threads obtained in the previous step. In order to minimize interprocessor
communication, all data computed or used in a thread are located in the private memory of the VP that
executes this thread. Finally, dependences not included in the hamiltonian recurrence and involving data
used on different VPs are satisfied by using the correct data communication and synchronization primitives.

This method was first presented in [ALTB89] and [ALTL90] as an approach for compiling single and
multiple-nested loops for shared-memory multiprocessors, respectively. The outline of the remaining
sections in this paper is as follows. In section 2 we describe the model of target machine for which GTS is
presented. In section 3 we review some concepts and definitions on data dependences used along this paper.
Section 4 presents GTS as a unified approach to task and data partitioning of single-nested loops derived
from the original flow-dependence relations of the sequential program. Some comments to the multiple-
nested case are given in section 5. The main concluding remarks and future work are given in section 6.

2. TARGET MACHINE AND PROGRAMMING STYLE

The architectural model that we consider in this paper is a fully-connected DMM system. In this model,
processors do not have access to a shared memory. Each processor has only access to some amount of local
private memory. In a fully-connected model, any processor of the DMM can exchange data with other
processors through a direct link of the communication network. Routing switches provide this logically
fully-connected network on DMM with a not fully-connected physical topology [iPSC88, Poun90]. In this
case, it is assumed that end to end delay is not much larger than point to point delay. If load is high,
congestion on the physical links will, of course, increase this delay.

The approach to processor communication is the message-passing model, where processors
communicate through explicit messages by using send and receive like primitives. The statement SEND

(dest, var) sends variable var from local memory to processor dest. The statement RECEIVE (src, var)

receives a datum from processor src and stores it in variable var. We assume that SEND operations will
complete without blocking while RECEIVE operations will block if there is no datum available.

Programming style is that a VP sends a new computed value as soon as possible if it is needed by another
VP. The VP that needs this value performs a receive operation on the VP that computes it as late as possible.

3. DEFINITIONS

Restructuring compilers are based on the analysis of dependences among a collection of statements (S1, S2,

..., Ss) within the scope of a normalized loop. Dependence relations between statements reflect a given

execution order that cannot be modified by the restructuring process.

As a result of the dependence analysis, a directed dependence graph G (V, E) is obtained, in which V is a
set of nodes V = {S1, ..., Ss} representing statements in the loop body, and E is a set of arcs E = {dijSi, Sj ∈

V} representing dependence relations between statements of the loop.

 Between each pair of statements Si and Sj, where Si precedes Sj in the sequential execution of the loop,

some data dependences are defined in the literature [KKPL81]. In our model only flow-dependences are of
concern [ChCh87]. Statement Sj is flow-dependent on statement Si if Sj uses a variable that Si can modify.

Anti and output dependences due to the reuse of variables can be removed by assigning different variable
names to different versions of data.

 Each arc dij ∈ E involves two statements of the loop body (source and sink statement) and it has an

associated dependence distance dij representing the number of iterations the dependence extends across. In

this paper we only consider data dependences with constant dependences known at compile time.

A chain Cij is an ordered set of arcs Cij ={dik , dkl , ..., dmj } between two statements Si and Sj such that each

node in the chain is visited only once. Given a chain Cij , we define its weight w(Cij) as

w ij = ∑
d lm∈ Cij

dlm

This weight w(Cij) represents the number of iterations between any pair of instances of statements Si and Sj.

A recurrence R is a cycle or closed chain in the dependence graph. A Hamiltonian Recurrence is a
recurrence going through all nodes in the dependence graph.

Let B = { R1, R2, ..., Rr } be the set of recurrences in a given dependence graph G. This graph G is an acyclic

dependence graph when B=∅ and it is a cyclic dependence graph when B ≥1. When at least one recurrence of
B is hamiltonian, the graph is called hamiltonian graph.

The iteration space IS of a loop is the set of points defined by a vector index I = <i1, i2, ..., in> in a space
with dimensionality equal to the depth of the nested-loop structure. Each point represents the execution of
an iteration of the loop body. In the scope of this paper we will consider n=1. The statement per iteration space

SIS of a loop is the set of points defined by the cartesian product IS x V, being V the set of nodes of the loop.
Each point SrI in this space represents the execution of a given iteration I of a given statement Sr

SIS = { SrI  1≤r≤s, 1≤I≤N }

Dependence relations dij ∈ E impose an execution order between any pair of points in SIS

SrI and Sr (I+dij)

4. GRAPH TRAVERSE SCHEDULING

In this section we present GTS as a unified approach to task and data partitioning in an automatic
restructuring environment for DMM. First GTS performs a partitioning of SIS in threads so that maximum
parallelism is obtained. After that, data mapping is done so that interprocessor communication is minimized.

GTS is based on the knowledge of the average parallelism of the loop evaluated as described in [ALTL90].
This measure of parallelism can be defined as the average number of active processors executing iterations
of the loop. Average parallelism can be evaluated as the quotient between the time to execute the sequential
version and the time required to execute the longest path through SIS. The longest path is obtained by
traversing the most restrictive recurrence of the dependence graph.

The partitioning strategy proposed covers the maximum number of possible dependences within the
sequential execution of each VP. The algorithm is considered in sections 4.1 and 4.2 for single-recurrence
hamiltonian graphs. If there is no such hamiltonian recurrence, one must be obtained by adding dummy
dependences that do not limit the parallelism of the loop. Other flow-dependences involving data mapped
on different VPs require explicit interprocessor communication introduced as described in section 4.3.
Parallel code generation is briefly considered in section 4.4.

4.1 Thread Partitioning

GTS performs two basic operations: alignment of the loop body through a hamiltonian recurrence and an
appropriate assignment of computations to VPs so that communication primitives can be easily introduced
when needed.

Given a recurrence R, we define a thread as the set of points in SIS directly dependent through the
recurrence. Let Thread Set TS be the minimum set of threads generated by a hamiltonian recurrence R that
cover the whole SIS.

Each thread in TS can be characterized by the point in SIS which does not depend on any previous
execution and from which the whole thread can be obtained by traversing recurrence R. Each arc d ij in R

determines those points of SIS associated to the sink statement S j that can be initially executed. The set of

initial dependence-free points can be expressed as

Sjx  1 ≤ x ≤dij .

Figure 1.b shows the threads generated by the hamiltonian recurrence for the loop and dependence graph of

figure 1.a. Initial dependence-free points are shown with filled shapes.

GTS assigns each thread to a different VP of the DMM system. Dependences within the hamiltonian
recurrence are embedded in the sequential execution of each thread. Observe that fully independent threads
are obtained when dealing with single-recurrence hamiltonian graphs. Figure 1.c shows the assignment of
threads to VPs proposed for the previous example. The assignment proposed fulfils that consecutive
iterations of a given statement are executed in consecutive VPs. This characteristic will ease interprocessor
communication described in section 4.3.

The scheduling of operations can be obtained by traversing the graph backwards and assigning to
consecutive VPs all initial dependence-free iterations of each statement. In the assignment proposed, a point
Sjk of the SIS is executed in virtual processor vp given by

vp = (k + wj1-1) mod wR (1)

denoting by wj1the weight of the chain Cj1 through R and wR its weight.

Figure 1: (a) Example of a single-recurrence hamiltonian dependence graph. (b) Statement per Iteration Space and threads. (c)

Thread partitioning and assignment obtained by GTS.

4.2 Data Partitioning

Data partitioning is done by GTS so that the amount of communication between VPs is minimized. It
considers the thread partitioning obtained as described in the previous section.

The basic idea is that each VP stores in its private local memory all array elements referenced by the
assigned thread. In the case of single-recurrence hamiltonian graphs, these elements are computed and used
in the same thread. In the case of multiple-recurrence graphs, a given vector element can be computed and
used in threads assigned to different VPs. In this case, data is stored in the local memory of the VP that
computes them. Communication primitives ensure the use of the correct value by the VP that uses them.

For each vector V in the original program, we generate a vector LV in each VP. Next we present the
function that maps a given element of vector V onto the local vector LV of a VP:

* If V is a vector whose elements are computed in statement S j, a given element V [f(i)] is stored

in local memory of virtual processor

vp = (f(i) - a + wj1 -1) mod wR ,

assuming linear indexing functions f(i) = i + a for the vector variable V.

The position of this element in the local vector LV is given by

(f(i) - a + wj1 - 1) / wR

 DO i = 1, 98
S1: A[i + 3] = B[i]

S2: C[i + 2] = A[i] * D[i - 1]

S3: B[i + 4] = C[i] / 3

 ENDO

S1

S3

S2
4

3

2

S1 91 S1 92 S1 93 S1 94 S3 91 S3 92 S2 91 S2 92 S2 93

S2 94 S2 95 S2 96 S2 97 S1 95 S1 96 S3 93 S3 94 S3 95

S3 96 S3 97 S3 98 S2 98 S1 97 S1 98

S11 S12 S13 S14 S31 S32 S21 S22

vp0 vp1 vp2 vp3 vp4 vp5 vp6 vp7

 S23

vp8

S24 S25 S26 S27 S15 S16 S33 S34 S35

S36 S37 S38 S39 S28 S29 S17 S18 S19

S1 10 S1 11 S1 12 S1 13 S3 10 S3 11 S2 10 S2 11 S2 12

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(c)

(b)

S1

S2

S3

1 2 3 4 5 6 7
iteration

...

8 9 10

(a)

* If W is a vector whose elements are not computed within the loop but used in a assignment

statement like

Sj: V[f(i)]= ... W[g(i)]

a given element W[g(i)] is stored in the same local memory as vector element V[f(i)]. Assuming

linear indexing functions f(i) = i + a and g(i) = i + b for both vector variables, element W[g(i)]

is stored in the local memory of virtual processor

vp = ((g(i) - a - b) + wj1 - 1) mod wR

The position of this element in the local vector LW is given by

(g(i) - a - b + wj1 - 1) / wR

As a result, there will be as many copies of a vector variable W as different uses in the loop.

With this distribution of data, only those elements of a vector used in the thread are stored in the local
memory of the VP that executes it. For each vector V of size N, the size of the local vector LV is N / wR + 1.

Figures 2.a through 2.c show the mapping of vector variables computed in each statement of the single-
nested loop of figure 1.a. Only those shaded elements must be initially loaded in local memories. Other
elements are computed during the execution of threads. Figure 2.d shows the mapping of variable D which
is used but never computed within the loop. In this case all vector elements must be initially loaded in local
memories.

Figure 2: Mapping onto virtual processors of the elements of vector variables A, B, C and D of example 1.

4.3 Data Communication

In the case of a hamiltonian graph with more than one recurrence, the scheduling is performed by applying

vp0 vp1 vp2 vp3 vp4 vp5 vp6 vp7 vp8

LA[0]

LA[1]

LA[2]

 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21

 1 2 3

LA[10]

LA[11]

85 86 87 88 89 90 91 92 93

94 95 96 97 100 10198 99

.

.

.

vp0 vp1 vp2 vp3 vp4 vp5 vp6 vp7 vp8

LB[0]

LB[1]

LB[2]

 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23

 3 4 5

LB[10]

LB[11]

87 88 89 90 91 92 93 94 95

96 97 98 99 100

.

.

.

.

(a) (b)

vp0 vp1 vp2 vp3 vp4 vp5 vp6 vp7 vp8

LC[0]

LC[1]

LC[2]

 1 4 2 3 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

LC[10]

LC[11]

91 92 93 94 95 96 97 98 99

100 101 102

.

.

.

vp0 vp1 vp2 vp3 vp4 vp5 vp6 vp7 vp8

LD[0]

LD[1]

LD[2]

 3 4 5 6 7 8 9 10 11

 0 1 2

12 13 14 15 16 17 18 19 20
.
.
.

(c) (d)

 1 2

the same procedure described previously to a hamiltonian recurrence Rsch of the loop. Once Rsch has been

obtained, dependences not included in Rsch and involving data mapped on different VPs require the use of

communication primitives. On the other hand, dependences included in Rsch are embedded in the sequential

execution of each thread.

Explicit communication must be introduced for any arc dij∉Rsch in the graph going from node Si to node

Sj. Detailed proofs of expressions given in this section can be found in [TALL90].

For each arc dij∉Rsch , a send operation to virtual processor vp’ must be executed in virtual processor vp

after the source statement Si. A receive operation from virtual processor vp must be executed in virtual

processor vp’ before the sink statement Sj. Due to the thread assignment proposed in the previous section,
the relationship between both vp and vp’ can be expressed as follows:

vp’ = (vp + dij - wij) mod wR and vp = (vp’ - dij + wij) mod wR (2)

Figure 3.b shows the thread partitioning obtained by GTS for the dependence graph of figure 3.a. Arrows
represent data communication that must be introduced due to the flow-dependence d32. Observe that virtual

processors vp5 and vp6 need some elements of vector C not computed in virtual processors vp1 and vp2

respectively due to the actual bounded iteration space. These elements must be initially sent in order to allow
the execution of threads that use them.

Figure 3: (a) Multiple-recurrence hamiltonian graph. (b) Thread partitioning and communication introduced by GTS.

Any dependence arc dij∉Rsch allows the execution of the first d ij iterations of the sink statement Sj. In

order to allow their execution, those elements of the vector variable that causes the dependence must be
initially sent by the appropriate VPs. Taking into account where the free iterations of the sink statement are
executed (1), each virtual processor vp will do the following number of initial sends

dij /wR  +1 if (vp - wi1 + dij) mod wR < dij mod wR

dij /wR  if (vp - wi1 + dij) mod wR ≥ dij mod wR

to virtual processors vp’ given by (2).

Observe that if we consider a new dependence relation d11 in the graph of figure 3.a with an associated
distance d11=8, this dependence relation will not need explicit inter-processor communication because the
element of vector A used in a given iteration of a thread has been computed in the previous iteration of the
same thread.

 DO i = 1, 99
S1: A[i + 3] = A[i - 5] + C[i]

S2: B[i + 2] = A[i] - C[i + 1] * 2

S3: C[i + 3] = B[i] / 3

 ENDO

S11 S12 S13 S31 S32 S21 S22 -

S24 - - S14 S15 S33 S34 S23

S36 S25 S26 - - S16 S17 S35

S19 S37 S38 S27 S28 - S18 -

 - S110 S111 S39 S310 S29 S210 -

vp0 vp1 vp2 vp3 vp4 vp5 vp6 vp7

(a)

S3

S2
3

3

2 2

S1

(b)

4.4 Code generation

Finally, parallel code must be generated so that each processor of the DMM system executes a given thread
and establishes communication with the appropriate processors. In the parallel code generated, all VP

execute the same program on the variables allocated in their local address space. Explicit communication is
automatically inserted to provide access to non-local data.

Figure 4 shows a possible version of the parallel code generated by GTS for the sequential loop of figure
3. In this case, it can be decomposed in three parts: prolog, core and epilog.

Figure 4: Parallel code generated for the example of figure 3.

In the prolog part, each processor executes the initial send primitives and some initial iterations of
statements extracted from the inner sequential DO loop. This has been done in order to use the same code
for all the processors. The epilog part executes the final part of the thread that can not be executed in a
complete iteration of the core part. The general code structure is described in [TALL90].

5. SOME CONSIDERATIONS TO THE MULTIPLE-NESTED CASE

In this section we briefly outline some aspects on the extension of GTS to the multiple-nested loop case.
Figure 5 shows a dependence graph and SIS for a possible double-nested loop. In this case we distinguish
between unbounded and bounded statement per iteration spaces. The bounded SIS is the finite subset of the
unbounded one determined by the actual loop iteration limits. Points outside the bounded SIS are drawn in
dashed lines in figure 5.b. In this case, a thread is considered as the set of points of the bounded SIS linked
by a dependence chain in the unbounded space. Figure 5.b shows some of the threads in the SIS generated
by the hamiltonian recurrence of figure 5.a

The length of the threads generated is not constant so the load assigned to processors of the DMM will
not be balanced if as many VPs as threads are allocated. A good load balancing can be obtained if we

DOACROSS j= 0,7
 ∆=(93-j)/8
 IF (j>=1 && j<=2)
 send ((j-4) mod 8, LC[0])
 ENDIF
 IF (j>=5)
 receive((j+4) mod 8, X)
 LB[0] = LA[0] - X * 2
 ENDIF
 IF (j>=3)
 LC[0] = LB[0] / 3
 send ((j-4) mod 8, LC[0])
 ENDIF
 DO i = 1,1 + ∆
 LA[i] = LA[i-1] + LC[i-1]
 receive ((j+4) mod 8, X)
 LB[i] = LA[i] - X * 2
 LC[i] = LB[i] / 3
 send ((j-4) mod 8, LC[i])
 ENDDO
 IF ((1 + ∆) * 8 + j < 99)
 LA[1 + ∆] = LA[∆] + LC[∆]
 ENDIF
 IF ((1+ ∆)*8 + j + 3) < 99)
 receive((j+4) mod 8, X)
 LB[1+ ∆] = LA[1+ ∆] - X * 2
 ENDIF
ENDOACROSS

prolog part

core part

epilog part

statically group threads without overcoming the execution time of the largest thread before grouping. It is
important to guarantee that the grouping of threads is deadlock-free when dependences of the graph require
explicit synchronization. In the example of figure 5, the two shortest threads can be executed in the same
VP without overcoming the execution time of the longest thread generated before grouping.

Figure 5: (a) dependence graph for a double nested-loop and (b) associated SIS and threads generated.

As in the single-nested loop case, each matrix V is distributed among local memories of VPs and stored
in one-dimesional local vectors LV. Each VP stores only those elements computed by the thread assigned and
those used by it but not computed in the loop.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have extended a previous work on loop parallelization for shared-memory machines to the
distributed memory ones. In this case a unified approach to data and task partitioning has been considered
in order to achieve maximum parallelism and minimum interprocessor communication.

Next we briefly comment some open questions left by the work presented in this paper. The partitioning
method presented assumes the existence of a hamiltonian recurrence in the dependence graph. This is not
the common case, so the problem must be taken into consideration [Aygu89]. A hamiltonian recurrence can
be obtained by adding a set of dummy dependences E’ such that the parallelism of the loop is not limited by
the new set of recurrences that appear in the dependence graph. Many sets of dummy arcs E’ can be used to
obtain a hamiltonian recurrence. In this case, we will choose that solution which minimizes the number of
threads generated and the cardinality of set E’, in order to reduce the amount of synchronization required.
Fast heuristics for obtaining good E’ sets should be looked into if the size of the problem becomes large
enough.

Dummy-arcs addition is a technique that can be also used to modify the number of processors for which
parallel code is generated. In this case we avoid the overhead due to dynamic scheduling of processors in
systems with less processors than parallelism of the loop.

In the case of a sequence of loops, the data must be reorganized between the end of one loop and the
begin of the next [GaJG88]. It will be interesting to minimize data reorganization by using a similar dummy-

(a)

<0,1>

<1,0>

S1

S2

DO I=1, 6

 DO J=1, 10 1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

J

10

I

(b)

arc addition technique by considering the whole loop sequence.

In the case of non fully-connected DMM, it would be interesting to reduce data routing through
processing elements by performing a mapping of virtual to real processors, taking into consideration the
physical interconnection topology.

REFERENCES

[AlKe87] J.R. Allen and K. Kennedy, "Automatic Translation of FORTRAN Programs to Vector Form", ACM Transactions on
Programming Languages and Systems, Vol. 9, No. 4, October 1987.

[ALTB89] E. Ayguadé, J. Labarta, J. Torres and P. Borensztejn, "GTS: Parallelization and Vectorization of Tight Recurrences",
Proc. of the Supercomputing’89, Reno-Nevada, November 1989.

[ALTL90] E. Ayguadé, J. Labarta, J. Torres, J.M. Llaberia and M. Valero, "Parallelism Evaluation and Partitioning of Nested
Loops for Shared-Memory Multiprocessors", Proc. of the 3rd Workshop on Programming Languages and Compilers
for Parallel Computing, Irvine-California, August 1990.

[Aygu89] E. Ayguadé, "Automatic Parallelization of Recurrences in Numerical Sequential Programs", Ph.D. Thesis,
Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Oct. 1989 (in spanish).

[ChCh87] Z. Chen and C-C. Chang, "Iteration-Level Parallel Execution of DO Loops with a Reduced Set of Dependence
Relations", Journal of Parallel and Distributed Computing, No. 4, 1987.

[FLNV91] A. Fernandez, J.M. Llaberia, J.J. Navarro and M. Valero-Garcia, "Interleaving Partitions of Systolic Algorithms for
Programming Distributed Memory Multiprocessors", Proceedings of the 2nd European Distributed Memory Computers
Conference, Springer-Verlag (in this volume), 1991.

[CaKe88] D. Callahan and K. Kennedy, "Compiling Programs for Distributed-Memory Multiprocessors", The Journal of
Supercomputing, No. 2, October 1988.

[GaJG88] K. Gallivan, W. Jalby and D. Gannon, "On the problem of Optimizing Data Transfers for Complex Memory Systems",
Proceedings of the 1988 ACM International Conference on Supercomputing, St. Malo-France, 1988.

[Gern90] H.M. Gerndt, "Automatic Parallelization for Distributed Memory Multiprocessing Systems", Ph.D. dissertation,
University of Bonn, Technical Report Series ACPC/TR 90-1, Austrian Center for Parallel Computation, 1990.

[IbSo89] O.H.Ibarra and S.M.Sohn, "On Mapping Systolic Algorithms onto the Hypercube", Proceedings of the 1989
International Conference on Parallel Processing, Vol. I, August 1989.

[iPSC88] iPSC/2, Intel Corporation, 1988. Order Number 280110-001.

[KeZi89] K. Kennedy and H.P. Zima, "Virtual Shared Memory for Distributed-Memory Machines", Proceedings of the 4th
Hypercube Conference, Monterey-California, 1989.

[KKPL81] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure and M. Wolfe, "Dependence Graphs and Compiler Optimiza-tions",
Proc. of the 8th ACM Symposium on Principles of Programming Languages Williamsburg, January 1981.

[PGHL89] C.D. Polychronopoulos, M. Girkar, M. R. Haghighat, C.L. Lee, B. Leung, D. Schouten, "Parafrase-2: An Environment
for Parallelizing, Partitioning, Synchronizing and Scheduling Programs on Multiprocessors", Proceedings of the 1989
International Conference on Parallel Processing, Vol. II, August 1989.

[Poun90] D. Pountain, "Virtual Channels: The Next Generation of Transputers", BYTE, April 1990.

[RaSa89] J. Ramanujam and P. Sadayappan, "A Methodology for Parallelizing Programs for Multicomputers and Complex
Memory Multiprocessors", Proceedings of the Supercomputing’89, Reno-Nevada, November 1989.

[TALL90] J. Torres, E. Ayguadé, J. Labarta, J.M. Llaberia and M. Valero, "A Technique for Data and Task Partitioning of Nested
Loops for Distributed-Memory Parallel Computers", Departament d’Arquitectura de Computadors, Universitat
Politècnica de Catalunya, UPC/DAC Research Report RR-90/13, June 1990.

[Tsen89] Ping-Sheng Tseng, "A Parallelizing Compiler for Distributed Memory Parallel Computers", Ph.D. Thesis, Carnegie
Mellon University, CMU-CS-89-148, May 1989.

View publication statsView publication stats

https://www.researchgate.net/publication/225133812

